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Introduction to Accelerated Life
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What is Accelerated Life Testing?

Traditional life data analysis involves analyzing times-to-failure data obtained under normal
operating conditions in order to quantify the life characteristics of a product, system or com-
ponent. For many reasons, obtaining such life data (or times-to-failure data) may be very dif-
ficult or impossible. The reasons for this difficulty can include the long life times of today's
products, the small time period between design and release, and the challenge of testing
products that are used continuously under normal conditions. Given these difficulties and the
need to observe failures of products to better understand their failure modes and life char-
acteristics, reliability practitioners have attempted to devise methods to force these products to
fail more quickly than they would under normal use conditions. In other words, they have
attempted to accelerate their failures. Over the years, the phrase accelerated life testing has been
used to describe all such practices.

As we use the phrase in this reference, accelerated life testing involves the acceleration of fail-
ures with the single purpose of quantifying the life characteristics of the product at normal use
conditions. More specifically, accelerated life testing can be divided into two areas: qualitative
accelerated testing and quantitative accelerated life testing. In qualitative accelerated testing,
the engineer is mostly interested in identifying failures and failure modes without attempting to
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make any predictions as to the product's life under normal use conditions. In quantitative accel-
erated life testing, the engineer is interested in predicting the life of the product (or more spe-
cifically, life characteristics such as MTTF, B(10) life, etc.) at normal use conditions, from data
obtained in an accelerated life test.

Qualitative vs. Quantitative Accelerated Tests

Each type of test that has been called an accelerated test provides different information about
the product and its failure mechanisms. These tests can be divided into two types: qualitative
tests (HALT, HAST, torture tests, shake and bake tests, etc.) and quantitative accelerated life
tests. This reference addresses and quantifies the models and procedures associated with quant-
itative accelerated life tests (QALT).

Qualitative Accelerated Testing

Qualitative tests are tests which yield failure information (or failure modes) only. They have
been referred to by many names including:

l Elephant tests

l Torture tests

l HALT

l Shake & bake tests
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Qualitative tests are performed on small samples with the specimens subjected to a single severe
level of stress, to multiple stresses, or to a time-varying stress (e.g., stress cycling, cold to hot,
etc.). If the specimen survives, it passes the test. Otherwise, appropriate actions will be taken to
improve the product's design in order to eliminate the cause(s) of failure. Qualitative tests are
used primarily to reveal probable failure modes. However, if not designed properly, they may
cause the product to fail due to modes that would never have been encountered in real life. A
good qualitative test is one that quickly reveals those failure modes that will occur during the
life of the product under normal use conditions. In general, qualitative tests are not designed to
yield life data that can be used in subsequent quantitative accelerated life data analysis as
described in this reference. In general, qualitative tests do not quantify the life (or reliability)
characteristics of the product under normal use conditions, however they provide valuable
information as to the types and levels of stresses one may wish to employ during a subsequent
quantitative test.

BENEFITS AND DRAWBACKS OF QUALITATIVE TESTS

l Benefits:

l Increase reliability by revealing probable failure modes.

l Provide valuable feedback in designing quantitative tests, and in many cases are a pre-
cursor to a quantitative test.
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l Drawbacks:

l Do not quantify the reliability of the product at normal use conditions.

Quantitative Accelerated Life Testing

Quantitative accelerated life testing (QALT), unlike the qualitative testing methods described
previously, consists of tests designed to quantify the life characteristics of the product, com-
ponent or system under normal use conditions, and thereby provide reliability information. Reli-
ability information can include the probability of failure of the product under use conditions,
mean life under use conditions, and projected returns and warranty costs. It can also be used to
assist in the performance of risk assessments, design comparisons, etc.

Quantitative accelerated life testing can take the form of usage rate acceleration or overstress
acceleration. Both accelerated life test methods are described next. Because usage rate accel-
eration test data can be analyzed with typical life data analysis methods, the overstress accel-
eration method is the testing method relevant to both ALTA folios in Weibull++ and the
remainder of this reference.

Quantitative Accelerated Life Tests

For all life tests, some time-to-failure information (or time-to-an-event) for the product is
required since the failure of the product is the event we want to understand. In other words, if
we wish to understand, measure and predict any event, we must observe how that event occurs!

Most products, components or systems are expected to perform their functions successfully for
long periods of time (often years). Obviously, for a company to remain competitive, the time
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required to obtain times-to-failure data must be considerably less than the expected life of the
product. Two methods of acceleration, usage rate acceleration and overstress acceleration, have
been devised to obtain times-to-failure data at an accelerated pace. For products that do not oper-
ate continuously, one can accelerate the time it takes to induce/observe failures by continuously
testing these products. This is called usage rate acceleration. For products for which usage rate
acceleration is impractical, one can apply stress(es) at levels which exceed the levels that a
product will encounter under normal use conditions and use the times-to-failure data obtained in
this manner to extrapolate to use conditions. This is called overstress acceleration.

Usage Rate Acceleration

For products which do not operate continuously under normal conditions, if the test units are
operated continuously, failures are encountered earlier than if the units were tested at normal
usage. For example, a microwave oven operates for small periods of time every day. One can
accelerate a test on microwave ovens by operating them more frequently until failure. The same
could be said of washers. If we assume an average washer use of 6 hours a week, one could con-
ceivably reduce the testing time 28-fold by testing these washers continuously.

Data obtained through usage acceleration can be analyzed with the same methods used to ana-
lyze regular times-to-failure data. These typical life data analysis techniques are thoroughly
described in ReliaSoft's Life Data Analysis Reference.

The limitation of usage rate acceleration arises when products, such as computer servers and
peripherals, maintain a very high or even continuous usage. In such cases, usage acceleration,
even though desirable, is not a feasible alternative. In these cases the practitioner must stimulate
the product to fail, usually through the application of stress(es). This method of accelerated life
testing is called overstress acceleration and is described next.

Overstress Acceleration

For products with very high or continuous usage, the accelerated life testing practitioner must
stimulate the product to fail in a life test. This is accomplished by applying stress(es) that
exceed the stress(es) that a product will encounter under normal use conditions. The times-to-
failure data obtained under these conditions are then used to extrapolate to use conditions. Accel-
erated life tests can be performed at high or low temperature, humidity, voltage, pressure, vibra-
tion, etc. in order to accelerate or stimulate the failure mechanisms. They can also be performed
at a combination of these stresses.

Stresses & Stress Levels

Accelerated life test stresses and stress levels should be chosen so that they accelerate the fail-
ure modes under consideration but do not introduce failure modes that would never occur under
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use conditions. Normally, these stress levels will fall outside the product specification limits but
inside the design limits as illustrated next:

This choice of stresses/stress levels and of the process of setting up the experiment is extremely
important. Consult your design engineer(s) and material scientist(s) to determine what stimuli
(stresses) are appropriate as well as to identify the appropriate limits (or stress levels). If these
stresses or limits are unknown, qualitative tests should be performed in order to ascertain the
appropriate stress(es) and stress levels. Proper use of design of experiments (DOE) methodology
is also crucial at this step. In addition to proper stress selection, the application of the stresses
must be accomplished in some logical, controlled and quantifiable fashion. Accurate data on the
stresses applied, as well as the observed behavior of the test specimens, must be maintained.

Clearly, as the stress used in an accelerated test becomes higher, the required test duration
decreases (because failures will occur more quickly). However, as the stress level moves farther
away from the use conditions, the uncertainty in the extrapolation increases. Confidence inter-
vals provide a measure of this uncertainty in extrapolation. (Confidence Intervals are presented
in Appendix A).

Understanding Quantitative Accelerated Life Data Analysis

In typical life data analysis one determines, through the use of statistical distributions, a life dis-
tribution that describes the times-to-failure of a product. Statistically speaking, one wishes to
determine the use level probability density function, or pdf, of the times-to-failure. Appendix A
of this reference presents these statistical concepts and provides a basic statistical background as
it applies to life data analysis.

Once this pdf has been obtained, all other desired reliability results can be easily determined,
including:
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l Percentage failing under warranty.

l Risk assessment.

l Design comparison.

l Wear-out period (product performance degradation).

In typical life data analysis, this use level probability density function, or pdf, of the times-to-
failure can be easily determined using regular times-to-failure/suspension data and an under-
lying distribution such as the Weibull, exponential or lognormal distribution. These lifetime dis-
tributions are presented in greater detail in the Distributions Used in Accelerated Testing
chapter of this reference.

In accelerated life data analysis, however, we face the challenge of determining the use level pdf
from accelerated life test data, rather than from times-to-failure data obtained under use con-
ditions. To accomplish this, we must develop a method that allows us to extrapolate from data
collected at accelerated conditions to arrive at an estimation of use level characteristics.

Looking at a Single Constant Stress Accelerated Life Test

To understand the process involved with extrapolating from overstress test data to use level con-
ditions, let's look closely at a simple accelerated life test. For simplicity we will assume that the
product was tested under a single stress at a single constant stress level. We will further assume
that times-to-failure data have been obtained at this stress level. The times-to-failure at this
stress level can then be easily analyzed using an underlying life distribution. A pdf of the times-
to-failure of the product can be obtained at that single stress level using traditional approaches.
This pdf, the overstress pdf, can likewise be used to make predictions and estimates of life
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measures of interest at that particular stress level. The objective in an accelerated life test, how-
ever, is not to obtain predictions and estimates at the particular elevated stress level at which the
units were tested, but to obtain these measures at another stress level, the use stress level.

To accomplish this objective, we must devise a method to traverse the path from the overstress
pdf to extrapolate a use level pdf. The next figure illustrates a typical behavior of the pdf at the
high stress (or overstress level) and the pdf at the use stress level.
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To further simplify the scenario, let's assume that the pdf for the product at any stress level can
be described by a single point. The next figure illustrates such a simplification where we need to
determine a way to project (or map) this single point from the high stress to the use stress.

Obviously, there are infinite ways to map a particular point from the high stress level to the use
stress level. We will assume that there is some model (or a function) that maps our point from
the high stress level to the use stress level. This model or function can be described math-
ematically and can be as simple as the equation for a line. The next figure demonstrates some
simple models or relationships.
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Even when a model is assumed (e.g., linear, exponential, etc.), the mapping possibilities are still
infinite since they depend on the parameters of the chosen model or relationship. For example, a
simple linear model would generate different mappings for each slope value because we can
draw an infinite number of lines through a point. If we tested specimens of our product at two
different stress levels, we could begin to fit the model to the data. Clearly, the more points we
have, the better off we are in correctly mapping this particular point or fitting the model to our
data.

The above figure illustrates that you need a minimum of two higher stress levels to properly
map the function to a use stress level.

Life Distributions and Life-Stress Models

The analysis of accelerated life test data consists of (1) an underlying life distribution that
describes the product at different stress levels and (2) a life-stress relationship (or model) that
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quantifies the manner in which the life distribution changes across different stress levels. These
elements of analysis are graphically shown next:

The combination of both an underlying life distribution and a life-stress model can be best seen
in the next figure where a pdf is plotted against both time and stress.

The assumed underlying life distribution can be any life distribution. The most commonly used
life distributions include the Weibull, exponential and lognormal distribution. Along with the
life distribution, a life-stress relationship is also used. These life-stress relationships have been
empirically derived and fitted to data. An overview of some of these life-stress relationships is
presented in the Analysis Method subchapter.

PAGE 11



ACCELERATED LIFE TESTING DATA ANALYSIS INTRODUCTION TO ACCELERATED LIFE TESTING

Analysis Method

With our current understanding of the principles behind accelerated life testing analysis, we will
continue with a discussion of the steps involved in analyzing life data collected from accelerated
life tests like those described in the Quantitative Accelerated Life Tests section.

Select a Life Distribution

The first step in performing an accelerated life data analysis is to choose an appropriate life dis-
tribution. Although it is rarely appropriate, the exponential distribution has in the past been
widely used as the underlying life distribution because of its simplicity. The Weibull and lognor-
mal distributions, which require more involved calculations, are more appropriate for most uses.
The underlying life distributions available in Weibull++ are presented in detail in the Dis-
tributions Used in Accelerated Testing chapter of this reference.

Select a Life-Stress Relationship

After you have selected an underlying life distribution appropriate to your data, the second step
is to select (or create) a model that describes a characteristic point or a life characteristic of the
distribution from one stress level to another.

The life characteristic can be any life measure such as the mean, median, R(x), F(x), etc. This
life characteristic is expressed as a function of stress. Depending on the assumed underlying life
distribution, different life characteristics are considered. Typical life characteristics for some dis-
tributions are shown in the next table.
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Distribution Parameters Life Characteristic

Weibull *, Scale parameter,

Exponential Mean life ( )

Lognormal , * Median,

*Usually assumed constant
For example, when considering the Weibull distribution, the scale parameter, , is chosen to be

the life characteristic that is stress dependent, while is assumed to remain constant across dif-
ferent stress levels. A life-stress relationship is then assigned to . Eight common life-stress
models are presented later in this reference. Click a topic to go directly to that page.

l Arrhenius Relationship

l Eyring Relationship

l Inverse Power Law Relationship

l Temperature-Humidity Relationship

l Temperature Non-Thermal Relationship

l Multivariable Relationships: General Log-Linear and Proportional Hazards

l Time-Varying Stress Models

Parameter Estimation

Once you have selected an underlying life distribution and life-stress relationship model to fit
your accelerated test data, the next step is to select a method by which to perform parameter
estimation. Simply put, parameter estimation involves fitting a model to the data and solving for
the parameters that describe that model. In our case, the model is a combination of the life dis-
tribution and the life-stress relationship (model). The task of parameter estimation can vary from
trivial (with ample data, a single constant stress, a simple distribution and simple model) to
impossible. Available methods for estimating the parameters of a model include the graphical
method, the least squares method and the maximum likelihood estimation method. Parameter
estimation methods are presented in detail in Appendix B of this reference. Greater emphasis
will be given to the MLE method because it provides a more robust solution, and is the one
employed in Weibull++.
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Derive Reliability Information

Once the parameters of the underlying life distribution and life-stress relationship have been
estimated, a variety of reliability information about the product can be derived such as:

l Warranty time.

l The instantaneous failure rate, which indicates the number of failures occurring per unit
time.

l The mean life which provides a measure of the average time of operation to failure.

l B(X) life, which is the time by which X% of the units will fail.

l etc.

Stress Loading

The discussion of accelerated life testing analysis thus far has included the assumption that the
stress loads applied to units in an accelerated test have been constant with respect to time. In
real life, however, different types of loads can be considered when performing an accelerated
test. Accelerated life tests can be classified as constant stress, step stress, cycling stress, random
stress, etc. These types of loads are classified according to the dependency of the stress with
respect to time. There are two possible stress loading schemes, loadings in which the stress is
time-independent and loadings in which the stress is time-dependent. The mathematical treat-
ment, models and assumptions vary depending on the relationship of stress to time. Both of
these loading schemes are described next.

Stress Is Time-Independent (Constant Stress)

When the stress is time-independent, the stress applied to a sample of units does not vary. In
other words, if temperature is the thermal stress, each unit is tested under the same accelerated
temperature, (e.g., 100° C), and data are recorded. This is the type of stress load that has been
discussed so far.
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This type of stress loading has many advantages over time-dependent stress loadings. Spe-
cifically:

l Most products are assumed to operate at a constant stress under normal use.

l It is far easier to run a constant stress test (e.g., one in which the chamber is maintained at a
single temperature).

l It is far easier to quantify a constant stress test.

l Models for data analysis exist, are widely publicized and are empirically verified.

l Extrapolation from a well-executed constant stress test is more accurate than extrapolation
from a time-dependent stress test.

Stress Is Time-Dependent

When the stress is time-dependent, the product is subjected to a stress level that varies with
time. Products subjected to time-dependent stress loadings will yield failures more quickly, and
models that fit them are thought by many to be the "holy grail" of accelerated life testing. The
cumulative damage model allows you to analyze data from accelerated life tests with time-
dependent stress profiles.

The step-stress model, as discussed in [31], and the related ramp-stress model are typical cases
of time-dependent stress tests. In these cases, the stress load remains constant for a period of
time and then is stepped/ramped into a different stress level, where it remains constant for
another time interval until it is stepped/ramped again. There are numerous variations of this
concept.
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The same idea can be extended to include a stress as a continuous function of time.
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Summary of Accelerated Life Testing Analysis

In summary, accelerated life testing analysis can be conducted on data collected from carefully
designed quantitative accelerated life tests. Well-designed accelerated life tests will apply stress
(es) at levels that exceed the stress level the product will encounter under normal use conditions
in order to accelerate the failure modes that would occur under use conditions. An underlying
life distribution (like the exponential, Weibull and lognormal lifetime distributions) can be
chosen to fit the life data collected at each stress level to derive overstress pdfs for each stress
level. A life-stress relationship (Arrhenius, Eyring, etc.) can then be chosen to quantify the path
from the overstress pdfs in order to extrapolate a use level pdf. From the extrapolated use level
pdf, a variety of functions can be derived, including reliability, failure rate, mean life, warranty
time etc.
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Accelerated Life Testing and
Weibull++
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This chapter presents issues relevant to using the Weibull++ software package to analyze data
collected in accelerated life tests. These issues include the types of data that can be analyzed
and the types of plots that can be created to display analysis results.

Data and Data Types

Statistical models rely extensively on data to make predictions. In life data analysis, the models
are the statistical distributions and the data are the life data or times-to-failure data of our
product. In the case of accelerated life data analysis, the models are the life-stress relationships
and the data are the times-to-failure data at a specific stress level.The accuracy of any pre-
diction is directly proportional to the quality, accuracy and completeness of the supplied data.
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Good data, along with the appropriate model choice, usually results in good predictions. Bad or
insufficient data will almost always result in bad predictions.

In the analysis of life data, we want to use all available data sets, which sometimes are incom-
plete or include uncertainty as to when a failure occurred. Life data can therefore be separated
into two types: complete data (all information is available) or censored data (some of the
information is missing). Each type is explained next.

Complete Data

Complete data means that the value of each sample unit is observed or known. For example, if
we had to compute the average test score for a sample of ten students, complete data would con-
sist of the known score for each student. Likewise in the case of life data analysis, our data set
(if complete) would be composed of the times-to-failure of all units in our sample. For example,
if we tested five units and they all failed (and their times-to-failure were recorded), we would
then have complete information as to the time of each failure in the sample.

Censored Data

In many cases, all of the units in the sample may not have failed (i.e., the event of interest was
not observed) or the exact times-to-failure of all the units are not known. This type of data is
commonly called censored data. There are three types of possible censoring schemes, right cen-
sored (also called suspended data), interval censored and left censored.

Right Censored (Suspension) Data

The most common case of censoring is what is referred to as right censored data, or suspended
data. In the case of life data, these data sets are composed of units that did not fail. For
example, if we tested five units and only three had failed by the end of the test, we would have
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right censored data (or suspension data) for the two units that did not failed. The term right cen-
sored implies that the event of interest (i.e., the time-to-failure) is to the right of our data point.
In other words, if the units were to keep on operating, the failure would occur at some time after
our data point (or to the right on the time scale).

Interval Censored Data

The second type of censoring is commonly called interval censored data. Interval censored data
reflects uncertainty as to the exact times the units failed within an interval. This type of data fre-
quently comes from tests or situations where the objects of interest are not constantly mon-
itored. For example, if we are running a test on five units and inspecting them every 100 hours,
we only know that a unit failed or did not fail between inspections. Specifically, if we inspect a
certain unit at 100 hours and find it operating, and then perform another inspection at 200 hours
to find that the unit is no longer operating, then the only information we have is that the unit
failed at some point in the interval between 100 and 200 hours. This type of censored data is
also called inspection data by some authors.
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It is generally recommended to avoid interval censored data because they are less informative
compared to complete data. However, there are cases when interval data are unavoidable due to
the nature of the product, the test and the test equipment. In those cases, caution must be taken
to set the inspection intervals to be short enough to observe the spread of the failures. For
example, if the inspection interval is too long, all the units in the test may fail within that inter-
val, and thus no failure distribution could be obtained.

In the case of accelerated life tests, the data set affects the accuracy of the fitted life-stress rela-
tionship, and subsequently, the extrapolation to Use Stress conditions. In this case, inspection
intervals should be chosen according to the expected acceleration factor at each stress level, and
therefore these intervals will be of different lengths for each stress level.

Left Censored Data

The third type of censoring is similar to the interval censoring and is called left censored data.
In left censored data, a failure time is only known to be before a certain time. For instance, we
may know that a certain unit failed sometime before 100 hours but not exactly when. In other
words, it could have failed any time between 0 and 100 hours. This is identical to interval cen-
sored data in which the starting time for the interval is zero.
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Grouped Data Analysis

In the standard folio, data can be entered individually or in groups. Grouped data analysis is
used for tests in which groups of units possess the same time-to-failure or in which groups of
units were suspended at the same time. We highly recommend entering redundant data in
groups. Grouped data speeds data entry by the user and significantly speeds up the calculations.

A Note about Complete and Suspension Data

Depending on the event that we want to measure, data type classification (i.e., complete or sus-
pension) can be open to interpretation. For example, under certain circumstances, and depending
on the question one wishes to answer, a specimen that has failed might be classified as a sus-
pension for analysis purposes. To illustrate this, consider the following times-to-failure data for
a product that can fail due to modes A, B and C:

If the objective of the analysis is to determine the probability of failure of the product,
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regardless of the mode responsible for the failure, we would analyze the data with all data
entries classified as failures (complete data). However, if the objective of the analysis is to
determine the probability of failure of the product due to Mode A only, we would then choose
to treat failures due to Modes B or C as suspension (right censored) data. Those data points
would be treated as suspension data with respect to Mode A because the product operated until
the recorded time without failure due to Mode A.

Fractional Failures

After the completion of a reliability test or after failures are observed in the field, a redesign can
be implemented to improve a product's reliability. After the redesign, and before new failure
data become available, it is often times desirable to"adjust" the reliability that was calculated
from the previous design and take "credit" for this theoretical improvement. This can be
achieved with fractional failures. Using past experience to estimate the effectiveness of a cor-
rective action or redesign, an analysis can take credit for this improvement by adjusting the fail-
ure count. Therefore, if a corrective action on a failure mode is believed to be 70% effective,
then the failure count can be reduced from 1 to 0.3 to reflect the effectiveness of the corrective
action.

For example, consider the following data set.

Number in State State F or S State End Time (Hr)

1 F 105

0.4 F 168

1 F 220

1 F 290

1 F 410

In this case, a design change has been implemented for the failure mode that occurred at 168
hours and is assumed to be 60% effective. In the background, Weibull++ converts this data set
to:

Number in State State F or S State End Time (Hr)
1 F 105
0.4 F 168
0.6 S 168
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1 F 220
1 F 290
1 F 410

If Rank Regression is used to estimate distribution parameters, the median ranks for the pre-
vious data set are calculated as follows:

Number in State State F or S State End Time (Hr) MON Median Rank (%)

1 F 105 1 12.945

0.4 F 168 20.267

0.6 S 168 - -

1 F 220 2.55 41.616

1 F 290 3.7 63.039

1 F 410 4.85 84.325

Given this information, the standard Rank Regression procedure is then followed to estimate
parameters.

If Maximum Likelihood Estimation (MLE) is used to estimate distribution parameters, the
grouped data likelihood function is used with the number in group being a non-integer value.

Example

A component underwent a reliability test. 12 samples were run to failure. The following figure
shows the failures and the analysis in a Weibull++ standard folio.

PAGE 24

https://help.reliasoft.com/reference/life_data_analysis/lda/parameter_estimation.html#Least
https://help.reliasoft.com/reference/life_data_analysis/lda/parameter_estimation.html#Maximum


ACCELERATED LIFE TESTING DATA ANALYSIS ACCELERATED LIFE TESTING AND WEIBULL++

The analysts believe that the planned design improvements will yield 50% effectiveness. To
estimate the reliability of the product based on the assumptions about the repair effectiveness,
they enter the data in groups, counting a 0.5 failure for each group. The following figure shows
the adjusted data set and the calculated parameters.

PAGE 25



ACCELERATED LIFE TESTING DATA ANALYSIS ACCELERATED LIFE TESTING AND WEIBULL++

The following overlay plot of unreliability vs. time shows that by using fractional failures the
estimated unreliability of the component has decreased, while the B10 life has increased from
2,566 hours to 3,564 hours.
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Plots

In addition to the probability plots required in life data analysis, accelerated life test data ana-
lysis utilizes a variety of stress-related plots. Each plot provides information crucial to per-
forming accelerated life test analyses. The addition of stress dependency into the life equations
introduces another dimension into the plots. This generates a whole new family of 3-dimen-
sional (3D) plots. The following table summarizes the types of plots available for ALTA folios
in ReliaSoft's Weibull++.

PAGE 27



ACCELERATED LIFE TESTING DATA ANALYSIS ACCELERATED LIFE TESTING AND WEIBULL++

Considerations relevant to the use of some of the plots available in Weibull++ are discussed in
the sections that follow.

Probability Plots

The probability plots used in accelerated life testing data analysis are similar to those used in
life data analysis. The only difference is that each probability plot in accelerated testing is asso-
ciated with the corresponding stress or stresses. Multiple lines will be plotted on a probability
plot in Weibull++, each corresponding to a different stress level. The information that can be
obtained from probability plots includes: reliability with confidence bounds, warranty time with
confidence bounds, shape and scale parameters, etc.
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Reliability and Unreliability Plots

There are two types of reliability plots. The first type is a 2-dimensional plot of Reliability vs.
Time for a given stress level. The second type is a 3-dimensional plot of the Reliability vs.
Time vs. Stress. The 2-dimensional plot of reliability is just a section of the 3-dimensional plot
at the desired stress level, as illustrated in the next figure.
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A Reliability vs. Time plot provides reliability values at a given time and time at a given reli-
ability. These can be plotted with or without confidence bounds. The same 2-dimensional and 3-
dimensional plots are available for unreliability as well, and they are just the complement of the
reliability plots.

Failure Rate Plots

The instantaneous failure rate is a function of time and stress. For this reason, a 2-dimensional
plot of Failure Rate vs. Time at a given stress and a 3-dimensional plot of Failure Rate vs. Time
and Stress can be obtained in Weibull++.
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A failure rate plot shows the expected number of failures per unit time at a particular stress
level (e.g., failures per hour at 410K).
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Pdf Plots

The pdf is a function of time and stress. For this reason, a 2-dimensional plot of the pdf vs.
Time at a given stress and a 3-dimensional plot of the pdf vs. Time and Stress can be obtained
in Weibull++.

A pdf plot represents the relative frequency of failures as a function of time and stress. Although
the pdf plot is less important in most reliability applications than the other plots available in
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Weibull++, it provides a good way of visualizing the distribution and its characteristics such as
its shape, skewness, mode, etc.

Life-Stress Plots

Life vs. Stress plots and Probability plots are the most important plot types in accelerated life
testing analysis. Life vs. Stress plots are widely used for estimating the parameters of life-stress
relationships. Any life measure can be plotted versus stress in the Life vs. Stress plots available
in Weibull++. Confidence bounds information on each life measure can also be plotted. The
most widely used Life vs. Stress plots are the Arrhenius and the inverse power law plots. The
following figure illustrates a typical Arrhenius Life vs. Stress plot.

Each line in the figure above represents the path for extrapolating a life measure, such as a per-
centile, from one stress level to another. The slope and intercept of those lines are the para-
meters of the life-stress relationship (whenever the relationship can be linearized). The imposed
pdfs represent the distribution of the data at each stress level.

Standard Deviation Plots

Standard Deviation vs. Stress is a useful plot in accelerated life testing analysis and provides
information about the spread of the data at each stress level.
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Acceleration Factor Plots

The acceleration factor is a unitless number that relates a product's life at an accelerated stress
level to the life at the use stress level. It is defined by:

where:

l is the life at the use stress level.

l is the life at the accelerated level.

As it can be seen, the acceleration factor depends on the life-stress relationship (i.e., Arrhenius,
Eyring, etc.) and is thus a function of stress.

The Acceleration Factor vs. Stress plot is generated using the equation above at a constant use
stress level and at a varying accelerated stress. In the below figure, the Acceleration Factor vs.
Stress was plotted for a constant use level of 300K. Since , the value of the accel-
eration factor at 300K is equal to 1. The acceleration factor for a temperature of 450K is approx-
imately 8. This means that the life at the use level of 300K is eight times higher than the life at
450K.

PAGE 34



ACCELERATED LIFE TESTING DATA ANALYSIS ACCELERATED LIFE TESTING AND WEIBULL++

Residual Plots

Residual analysis for reliability consists of analyzing the results of a regression analysis by
assigning residual values to each data point in the data set. Plotting these residuals provides a
very good tool in assessing model assumptions and revealing inadequacies in the model, as well
as revealing extreme observations. Three types of residual plots are available in Weibull++.

Standardized Residuals (SR)

The standardized residuals plot for the Weibull and lognormal distributions can be obtained in
Weibull++. Each plot type is discussed next.

SR for the Weibull Distribution

Once the parameters have been estimated, the standardized residuals for the Weibull distribution
can be calculated by:

Then, under the assumed model, these residuals should look like a sample from an extreme
value distribution with a mean of 0. For the Weibull distribution the standardized residuals are
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plotted on a smallest extreme value probability paper. If the Weibull distribution adequately
describes the data, then the standardized residuals should appear to follow a straight line on
such a probability plot. Note that when an observation is censored (suspended), the cor-
responding residual is also censored.

SR for the Lognormal Distribution

Once the parameters have been estimated, the fitted or calculated responses can be calculated
by:

Then, under the assumed model, the standardized residuals should be normally distributed with

a mean of 0 and a standard deviation of 1 (     ). Consequently, the standardized resid-
uals for the lognormal distribution are commonly displayed on a normal probability plot.

Cox-Snell Residuals

The Cox-Snell residuals are given by:
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where is the calculated reliability value at failure time The Cox-Snell residuals are
plotted on an exponential probability paper.

Standardized vs. Fitted Values

A Standardized vs. Fitted Value plot helps to detect behavior not modeled in the underlying rela-
tionship. However, when heavy censoring is present, the plot is more difficult to interpret. In a
Standardized vs. Fitted Value plot, the standardized residuals are plotted versus the scale para-
meter of the underlying life distribution (which is a function of stress) on log-linear paper (lin-

ear on the Y-axis). Therefore, the standardized residuals are plotted versus for the

Weibull distribution, versus for the lognormal distribution and versus for the
exponential distribution.
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Distributions Used in Accelerated
Testing
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In this chapter, we will briefly present three lifetime distributions commonly used in accelerated
life test analysis: the exponential, the Weibull and the lognormal distributions. Note that
although all forms are mentioned below, Weibull++ uses the 1-parameter form of the expo-
nential distribution and the 2-parameter form of the Weibull distribution.

Readers who are interested in a more rigorous overview of these distributions (or for inform-
ation about other life distributions) can refer to ReliaSoft's Life Data Analysis Reference. For
information about the parameter estimation methods, see Appendix B.

The Exponential Distribution

The exponential distribution is commonly used for components or systems exhibiting a constant
failure rate. Due to its simplicity, it has been widely employed, even in cases where it doesn't
apply. In its most general case, the 2-parameter exponential distribution is defined by:
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Where is the constant failure rate in failures per unit of measurement (e.g., failures per hour,

per cycle, etc.) and is the location parameter. In addition, , where is the mean
time between failures (or to failure).

If the location parameter, , is assumed to be zero, then the distribution becomes the 1-para-
meter exponential or:

For a detailed discussion of this distribution, see The Exponential Distribution.

Exponential Distribution Functions

The Mean or MTTF

The mean, or mean time to failure (MTTF) is given by:

Note that when , the MTTF is the inverse of the exponential distribution's constant fail-
ure rate. This is only true for the exponential distribution. Most other distributions do not have a
constant failure rate. Consequently, the inverse relationship between failure rate and MTTF does
not hold for these other distributions.

The Median

The median, is:

The Mode

The mode, is:
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The Standard Deviation

The standard deviation, , is:

The Exponential Reliability Function

The equation for the 2-parameter exponential cumulative density function, or cdf, is given by:

Recalling that the reliability function of a distribution is simply one minus the cdf, the reliability
function of the 2-parameter exponential distribution is given by:

The 1-parameter exponential reliability function is given by:

The Exponential Conditional Reliability Function

The exponential conditional reliability equation gives the reliability for a mission of duration,
having already successfully accumulated hours of operation up to the start of this new mis-
sion. The exponential conditional reliability function is:
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which says that the reliability for a mission of duration undertaken after the component or
equipment has already accumulated hours of operation from age zero is only a function of
the mission duration, and not a function of the age at the beginning of the mission. This is
referred to as the memoryless property.

The Exponential Reliable Life Function

The reliable life, or the mission duration for a desired reliability goal, , for the 1-parameter
exponential distribution is:

or:

The Exponential Failure Rate Function

The exponential failure rate function is:

Once again, note that the constant failure rate is a characteristic of the exponential distribution,
and special cases of other distributions only. Most other distributions have failure rates that are
functions of time.

Characteristics of the Exponential Distribution

The primary trait of the exponential distribution is that it is used for modeling the behavior of
items with a constant failure rate. It has a fairly simple mathematical form, which makes it
fairly easy to manipulate. Unfortunately, this fact also leads to the use of this model in situ-
ations where it is not appropriate. For example, it would not be appropriate to use the expo-
nential distribution to model the reliability of an automobile. The constant failure rate of the
exponential distribution would require the assumption that the automobile would be just as
likely to experience a breakdown during the first mile as it would during the one-hundred-thou-
sandth mile. Clearly, this is not a valid assumption. However, some inexperienced practitioners
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of reliability engineering and life data analysis will overlook this fact, lured by the siren-call of
the exponential distribution's relatively simple mathematical models.

The Effect of lambda and gamma on the Exponential pdf

l The exponential pdf has no shape parameter, as it has only one shape.

l The exponential pdf is always convex and is stretched to the right as decreases in
value.

l The value of the pdf function is always equal to the value of at (or ).

l The location parameter, , if positive, shifts the beginning of the distribution by a dis-
tance of to the right of the origin, signifying that the chance failures start to occur
only after hours of operation, and cannot occur before this time.

l The scale parameter is .

l As , .
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The Effect of lambda and gamma on the Exponential Reliability Function

l The 1-parameter exponential reliability function starts at the value of 100% at ,
decreases thereafter monotonically and is convex.

l The 2-parameter exponential reliability function remains at the value of 100% for
up to , and decreases thereafter monotonically and is convex.

l As , .

l The reliability for a mission duration of , or of one MTTF duration, is
always equal to or 36.79%. This means that the reliability for a mission
which is as long as one MTTF is relatively low and is not recommended because only
36.8% of the missions will be completed successfully. In other words, of the equip-
ment undertaking such a mission, only 36.8% will survive their mission.

The Effect of lambda and gamma on the Failure Rate Function

l The 1-parameter exponential failure rate function is constant and starts at .

l The 2-parameter exponential failure rate function remains at the value of 0 for
up to , and then keeps at the constant value of .
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The Weibull Distribution

The Weibull distribution is a general purpose reliability distribution used to model material
strength, times-to-failure of electronic and mechanical components, equipment or systems. In its
most general case, the 3-parameter Weibull pdf is defined by:

where = shape parameter, = scale parameter and = location parameter.

If the location parameter, , is assumed to be zero, then the distribution becomes the 2-para-
meter Weibull or:

One additional form is the 1-parameter Weibull distribution, which assumes that the location
parameter, is zero, and the shape parameter is a known constant, or = constant = , so:
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For a detailed discussion of this distribution, see The Weibull Distribution.

Weibull Distribution Functions

The Mean or MTTF

The mean, , (also called MTTF) of the Weibull pdf is given by:

where

is the gamma function evaluated at the value of:

The gamma function is defined as:

For the 2-parameter case, this can be reduced to:

Note that some practitioners erroneously assume that is equal to the MTTF, . This is only

true for the case of: or:
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The Median

The median, , of the Weibull distribution is given by:

The Mode

The mode, , is given by:

The Standard Deviation

The standard deviation, , is given by:

The Weibull Reliability Function

The equation for the 3-parameter Weibull cumulative density function, cdf, is given by:

This is also referred to as unreliability and designated as by some authors.
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Recalling that the reliability function of a distribution is simply one minus the cdf, the reliability
function for the 3-parameter Weibull distribution is then given by:

The Weibull Conditional Reliability Function

The 3-parameter Weibull conditional reliability function is given by:

or:

These give the reliability for a new mission of duration, having already accumulated time
of operation up to the start of this new mission, and the units are checked out to assure that they
will start the next mission successfully. It is called conditional because you can calculate the reli-
ability of a new mission based on the fact that the unit or units already accumulated hours of
operation successfully.

The Weibull Reliable Life

The reliable life, , of a unit for a specified reliability, , starting the mission at age zero, is
given by:

This is the life for which the unit/item will be functioning successfully with a reliability of .

If , then , the median life, or the life by which half of the units will sur-
vive.

The Weibull Failure Rate Function

The Weibull failure rate function, , is given by:
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Characteristics of the Weibull Distribution

The Weibull distribution is widely used in reliability and life data analysis due to its versatility.
Depending on the values of the parameters, the Weibull distribution can be used to model a vari-
ety of life behaviors. We will now examine how the values of the shape parameter, , and the
scale parameter, , affect such distribution characteristics as the shape of the curve, the reli-
ability and the failure rate. Note that in the rest of this section we will assume the most general
form of the Weibull distribution, (i.e., the 3-parameter form). The appropriate substitutions to
obtain the other forms, such as the 2-parameter form where or the 1-parameter form

where constant, can easily be made.

Effects of the Shape Parameter, beta

The Weibull shape parameter, , is also known as the slope. This is because the value of is
equal to the slope of the regressed line in a probability plot. Different values of the shape para-
meter can have marked effects on the behavior of the distribution. In fact, some values of the
shape parameter will cause the distribution equations to reduce to those of other distributions.
For example, when , the pdf of the 3-parameter Weibull distribution reduces to that of
the 2-parameter exponential distribution or:

where failure rate. The parameter is a pure number, (i.e., it is dimensionless).

The following figure shows the effect of different values of the shape parameter, , on the
shape of the pdf. As you can see, the shape can take on a variety of forms based on the value of

.
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For :

l As (or ),

l As , .

l decreases monotonically and is convex as it increases beyond the value of .

l The mode is non-existent.

For :

l at (or ).

l increases as (the mode) and decreases thereafter.

l For the Weibull pdf is positively skewed (has a right tail), for
its coefficient of skewness approaches zero (no tail). Consequently,

it may approximate the normal pdf, and for it is negatively skewed (left

tail). The way the value of relates to the physical behavior of the items being
modeled becomes more apparent when we observe how its different values affect the

reliability and failure rate functions. Note that for , , but for
,
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This abrupt shift is what complicates MLE estimation when is close to
1.

The Effect of beta on the cdf and Reliability Function

The above figure shows the effect of the value of on the cdf, as manifested in the Weibull
probability plot. It is easy to see why this parameter is sometimes referred to as the slope. Note
that the models represented by the three lines all have the same value of . The following fig-

ure shows the effects of these varied values of on the reliability plot, which is a linear analog
of the probability plot.
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l decreases sharply and monotonically for and is convex.

l For , decreases monotonically but less sharply than for and
is convex.

l For , decreases as increases. As wear-out sets in, the curve goes through
an inflection point and decreases sharply.

The Effect of beta on the Weibull Failure Rate

The value of has a marked effect on the failure rate of the Weibull distribution and inferences
can be drawn about a population's failure characteristics just by considering whether the value
of is less than, equal to, or greater than one.
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As indicated by above figure, populations with exhibit a failure rate that decreases with

time, populations with have a constant failure rate (consistent with the exponential dis-

tribution) and populations with have a failure rate that increases with time. All three life
stages of the bathtub curve can be modeled with the Weibull distribution and varying values of

. The Weibull failure rate for is unbounded at (or . The failure rate,

decreases thereafter monotonically and is convex, approaching the value of zero as

or . This behavior makes it suitable for representing the failure rate of
units exhibiting early-type failures, for which the failure rate decreases with age. When encoun-
tering such behavior in a manufactured product, it may be indicative of problems in the pro-
duction process, inadequate burn-in, substandard parts and components, or problems with

packaging and shipping. For , yields a constant value of or:

This makes it suitable for representing the failure rate of chance-type failures and the useful life
period failure rate of units.
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For , increases as increases and becomes suitable for representing the failure rate

of units exhibiting wear-out type failures. For the curve is concave, con-
sequently the failure rate increases at a decreasing rate as increases.

For there emerges a straight line relationship between and , starting at a value of

at , and increasing thereafter with a slope of . Consequently, the failure

rate increases at a constant rate as increases. Furthermore, if the slope becomes equal

to 2, and when , becomes a straight line which passes through the origin with a

slope of 2. Note that at , the Weibull distribution equations reduce to that of the
Rayleigh distribution.

When the curve is convex, with its slope increasing as increases. Con-
sequently, the failure rate increases at an increasing rate as increases, indicating wearout life.

A change in the scale parameter has the same effect on the distribution as a change of the

abscissa scale. Increasing the value of while holding constant has the effect of stretching
out the pdf. Since the area under a pdf curve is a constant value of one, the "peak" of the pdf
curve will also decrease with the increase of , as indicated in the above figure.
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l If is increased while and are kept the same, the distribution gets stretched out
to the right and its height decreases, while maintaining its shape and location.

l If is decreased while and are kept the same, the distribution gets pushed in
towards the left (i.e., towards its beginning or towards 0 or ), and its height
increases.

l has the same units as , such as hours, miles, cycles, actuations, etc.

Effects of the Location Parameter, gamma

The location parameter, , as the name implies, locates the distribution along the abscissa.
Changing the value of has the effect of sliding the distribution and its associated function

either to the right (if ) or to the left (if ).

l When the distribution starts at or at the origin.

l If the distribution starts at the location to the right of the origin.

l If the distribution starts at the location to the left of the origin.

l provides an estimate of the earliest time-to-failure of such units.

l The life period 0 to is a failure free operating period of such units.
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l The parameter may assume all values and provides an estimate of the earliest time
a failure may be observed. A negative may indicate that failures have occurred
prior to the beginning of the test, namely during production, in storage, in transit, dur-
ing checkout prior to the start of a mission, or prior to actual use.

l has the same units as , such as hours, miles, cycles, actuations, etc.

The Lognormal Distribution

The lognormal distribution is commonly used for general reliability analysis, cycles-to-failure in
fatigue, material strengths and loading variables in probabilistic design. When the natural log-
arithms of the times-to-failure are normally distributed, then we say that the data follow the
lognormal distribution.

The pdf of the lognormal distribution is given by:

where is the mean of the natural logarithms of the times-to-failure and is the standard
deviation of the natural logarithms of the times to failure.

For a detailed discussion of this distribution, see The Lognormal Distribution.

Lognormal Distribution Functions

The Mean or MTTF

The mean of the lognormal distribution, , is discussed in Kececioglu [19]:

The mean of the natural logarithms of the times-to-failure, , in terms of and is given
by:
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The Median

The median of the lognormal distribution, , is discussed in Kececioglu [19]:

The Mode

The mode of the lognormal distribution, , is discussed in Kececioglu [19]:

The Standard Deviation

The standard deviation of the lognormal distribution, , is discussed in Kececioglu [19]:

The standard deviation of the natural logarithms of the times-to-failure, , in terms of and
is given by:

The Lognormal Reliability Function

The reliability for a mission of time , starting at age 0, for the lognormal distribution is determ-
ined by:

or:
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As with the normal distribution, there is no closed-form solution for the lognormal reliability
function. Solutions can be obtained via the use of standard normal tables. Since the application
automatically solves for the reliability we will not discuss manual solution methods. For inter-
ested readers, full explanations can be found in the references.

The Lognormal Conditional Reliability Function

The lognormal conditional reliability function is given by:

Once again, the use of standard normal tables is necessary to solve this equation, as no closed-
form solution exists.

The Lognormal Reliable Life Function

As there is no closed-form solution for the lognormal reliability equation, no closed-form solu-
tion exists for the lognormal reliable life either. In order to determine this value, one must solve
the following equation for :

The Lognormal Failure Rate Function

The lognormal failure rate is given by:
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As with the reliability equations, standard normal tables will be required to solve for this func-
tion.

Characteristics of the Lognormal Distribution

l The lognormal distribution is a distribution skewed to the right.

l The pdf starts at zero, increases to its mode, and decreases thereafter.

l The degree of skewness increases as increases, for a given
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l For the same , the pdf 's skewness increases as increases.

l For values significantly greater than 1, the pdf rises very sharply in the beginning, (i.e.,
for very small values of near zero), and essentially follows the ordinate axis, peaks out

early, and then decreases sharply like an exponential pdf or a Weibull pdf with .

l The parameter, , in terms of the logarithm of the is also the scale parameter, and
not the location parameter as in the case of the normal pdf.

l The parameter , or the standard deviation of the in terms of their logarithm or of
their , is also the shape parameter and not the scale parameter, as in the normal pdf, and
assumes only positive values.

Lognormal Distribution Parameters in ReliaSoft's Software

In ReliaSoft's software, the parameters returned for the lognormal distribution are always log-

arithmic. That is: the parameter represents the mean of the natural logarithms of the times-
to-failure, while represents the standard deviation of these data point logarithms. Spe-
cifically, the returned is the square root of the variance of the natural logarithms of the data
points. Even though the application denotes these values as mean and standard deviation, the
user is reminded that these are given as the parameters of the distribution, and are thus the mean
and standard deviation of the natural logarithms of the data. The mean value of the times-to-fail-
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ure, not used as a parameter, as well as the standard deviation can be obtained through the QCP
or the Function Wizard.
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Arrhenius Relationship
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The Arrhenius life-stress model (or relationship) is probably the most common life-stress rela-
tionship utilized in accelerated life testing. It has been widely used when the stimulus or accel-
eration variable (or stress) is thermal (i.e., temperature). It is derived from the Arrhenius
reaction rate equation proposed by the Swedish physical chemist Svandte Arrhenius in 1887.
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Formulation

The Arrhenius reaction rate equation is given by:

where:

l is the speed of reaction.

l is an unknown nonthermal constant.

l is the activation energy .

l is the Boltzmann's constant .

l is the absolute temperature .

The activation energy is the energy that a molecule must have to participate in the reaction. In
other words, the activation energy is a measure of the effect that temperature has on the reac-
tion.

The Arrhenius life-stress model is formulated by assuming that life is proportional to the inverse
reaction rate of the process, thus the Arrhenius life-stress relationship is given by:

where:

l represents a quantifiable life measure, such as mean life, characteristic life, median life,

or life, etc.

l represents the stress level (formulated for temperature and temperature values in abso-
lute units, degrees Kelvin or degrees Rankine).

l is one of the model parameters to be determined, .

l is another model parameter to be determined.
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Since the Arrhenius is a physics-based model derived for temperature dependence, it is used for
temperature accelerated tests. For the same reason, temperature values must be in absolute units
(Kelvin or Rankine), even though the Arrhenius equation is unitless.

Life Stress Plots

The Arrhenius relationship can be linearized and plotted on a Life vs. Stress plot, also called the
Arrhenius plot. The relationship is linearized by taking the natural logarithm of both sides in the
Arrhenius equation or:
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In the linearized Arrhenius equation, is the intercept of the line and is the slope of
the line. Note that the inverse of the stress, and not the stress, is the variable. In the above fig-
ure, life is plotted versus stress and not versus the inverse stress. This is because the linearized
Arrhenius equation was plotted on a reciprocal scale. On such a scale, the slope appears to
be negative even though it has a positive value. This is because is actually the slope of the
reciprocal of the stress and not the slope of the stress. The reciprocal of the stress is decreasing

as stress is increasing (     is decreasing as is increasing). The two different axes are shown
in the next figure.
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The Arrhenius relationship is plotted on a reciprocal scale for practical reasons. For example, in
the above figure it is more convenient to locate the life corresponding to a stress level of 370K
than to take the reciprocal of 370K (0.0027) first, and then locate the corresponding life. The
shaded areas shown in the above figure are the imposed at each test stress level. From such
imposed pdfs one can see the range of the life at each test stress level, as well as the scatter in
life. The next figure illustrates a case in which there is a significant scatter in life at each of the
test stress levels.
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Activation Energy and the Parameter B

Depending on the application (and where the stress is exclusively thermal), the parameter
can be replaced by:

Note that in this formulation, the activation energy must be known a priori. If the activation
energy is known then there is only one model parameter remaining, Because in most real
life situations this is rarely the case, all subsequent formulations will assume that this activation
energy is unknown and treat as one of the model parameters. has the same properties as
the activation energy. In other words, is a measure of the effect that the stress (i.e. tem-

perature) has on the life. The larger the value of the higher the dependency of the life on the
specific stress. Parameter may also take negative values. In that case, life is increasing with
increasing stress. An example of this would be plasma filled bulbs, where low temperature is a
higher stress on the bulbs than high temperature.
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Acceleration Factor

Most practitioners use the term acceleration factor to refer to the ratio of the life (or acceleration
characteristic) between the use level and a higher test stress level or:

For the Arrhenius model this factor is:

Thus, if is assumed to be known a priori (using an activation energy), the assumed activation
energy alone dictates this acceleration factor!
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Arrhenius-Exponential

The pdf of the 1-parameter exponential distribution is given by:

It can be easily shown that the mean life for the 1-parameter exponential distribution (presented
in detail here) is given by:

thus:

The Arrhenius-exponential model pdf can then be obtained by setting :

Therefore:

Substituting for yields a pdf that is both a function of time and stress or:

Arrhenius-Exponential Statistical Properties Summary

Mean or MTTF

The mean, or Mean Time To Failure (MTTF) of the Arrhenius-exponential is given by,
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Median

The median, of the Arrhenius-exponential model is given by:

Mode

The mode, of the Arrhenius-exponential model is given by:

Standard Deviation

The standard deviation, , of the Arrhenius-exponential model is given by:

Arrhenius-Exponential Reliability Function

The Arrhenius-exponential reliability function is given by:

This function is the complement of the Arrhenius-exponential cumulative distribution function
or:

and:

Conditional Reliability

The Arrhenius-exponential conditional reliability function is given by:
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Reliable Life

For the Arrhenius-exponential model, the reliable life, or the mission duration for a desired reli-
ability goal, is given by:

or:

Parameter Estimation

Maximum Likelihood Estimation Method

The log-likelihood function for the exponential distribution is as shown next:

where:

and:
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l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the failure rate parameter (unknown).

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

Substituting the Arrhenius-exponential model into the log-likelihood function yields:

where:

PAGE 72



ACCELERATED LIFE TESTING DATA ANALYSIS ARRHENIUS RELATIONSHIP

The solution (parameter estimates) will be found by solving for the parameters so that

and , where:

Arrhenius-Weibull

The pdf for the 2-parameter Weibull distribution is given by:

The scale parameter (or characteristic life) of the Weibull distribution is .

The Arrhenius-Weibull model pdf can then be obtained by setting :

and substituting for in the 2-parameter Weibull distribution equation:

An illustration of the pdf for different stresses is shown in the next figure. As expected, the pdf
at lower stress levels is more stretched to the right, with a higher scale parameter, while its
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shape remains the same (the shape parameter is approximately 3). This behavior is observed
when the parameter of the Arrhenius model is positive.

The advantage of using the Weibull distribution as the life distribution lies in its flexibility to
assume different shapes. The Weibull distribution is presented in greater detail in The Weibull
Distribution.

Arrhenius-Weibull Statistical Properties Summary

Mean or MTTF

The mean, (also called by some authors), of the Arrhenius-Weibull relationship is
given by:

where is the gamma function evaluated at the value of .

Median

The median, for the Arrhenius-Weibull model is given by:
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Mode

The mode, for the Arrhenius-Weibull model is given by:

Standard Deviation

The standard deviation, for the Arrhenius-Weibull model is given by:

Arrhenius-Weibull Reliability Function

The Arrhenius-Weibull reliability function is given by:

If the parameter is positive, then the reliability increases as stress decreases.
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The behavior of the reliability function of the Weibull distribution for different values of was
illustrated here. In the case of the Arrhenius-Weibull model, however, the reliability is a func-
tion of stress also. A 3D plot such as the ones shown in the next figure is now needed to illus-
trate the effects of both the stress and

Conditional Reliability Function

The Arrhenius-Weibull conditional reliability function at a specified stress level is given by:
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or:

Reliable Life

For the Arrhenius-Weibull relationship, the reliable life, , of a unit for a specified reliability
and starting the mission at age zero is given by:

This is the life for which the unit will function successfully with a reliability of . If

then , the median life, or the life by which half of the units will sur-
vive.

Arrhenius-Weibull Failure Rate Function

The Arrhenius-Weibull failure rate function, , is given by:

PAGE 77



ACCELERATED LIFE TESTING DATA ANALYSIS ARRHENIUS RELATIONSHIP

Parameter Estimation

Maximum Likelihood Estimation Method

The Arrhenius-Weibull log-likelihood function is as follows:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.
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l is the Weibull shape parameter (unknown, the first of three parameters to be estimated).

l is the Arrhenius parameter (unknown, the second of three parameters to be estimated).

l is the second Arrhenius parameter (unknown, the third of three parameters to be estim-
ated).

l is the stress level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for so that

and , where:
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Arrhenius-Weibull example

Consider the following times-to-failure data at three different stress levels.

The data set was analyzed jointly and with a complete MLE solution over the entire data set,
using ReliaSoft's Weibull++. The analysis yields:

Once the parameters of the model are estimated, extrapolation and other life measures can be
directly obtained using the appropriate equations. Using the MLE method, confidence bounds
for all estimates can be obtained. Note that in the next figure, the more distant the accelerated
stress is from the operating stress, the greater the uncertainty of the extrapolation. The degree of
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uncertainty is reflected in the confidence bounds. (General theory and calculations for con-
fidence intervals are presented in Appendix A. Specific calculations for confidence bounds on
the Arrhenius model are presented in the Arrhenius Confidence Bounds section).

Arrhenius-Lognormal

The pdf of the lognormal distribution is given by:

where:

and:

l times-to-failure.

l mean of the natural logarithms of the times-to-failure.

l standard deviation of the natural logarithms of the times-to-failure.
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The median of the lognormal distribution is given by:

The Arrhenius-lognormal model pdf can be obtained first by setting . Therefore:

or:

Thus:

Substituting the above equation into the lognormal pdf yields the Arrhenius-lognormal model
pdf or:

Note that in the Arrhenius-lognormal pdf, it was assumed that the standard deviation of the nat-
ural logarithms of the times-to-failure, is independent of stress. This assumption implies
that the shape of the distribution does not change with stress (     is the shape parameter of the
lognormal distribution).

Arrhenius-Lognormal Statistical Properties Summary

The Mean

The mean life of the Arrhenius-lognormal model (mean of the times-to-failure), , is given by:
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The mean of the natural logarithms of the times-to-failure, , in terms of and is given
by:

The Standard Deviation

The standard deviation of the Arrhenius-lognormal model (standard deviation of the times-to-
failure), , is given by:

The standard deviation of the natural logarithms of the times-to-failure, , in terms of and
is given by:

The Mode

l The mode of the Arrhenius-lognormal model is given by:

Arrhenius-Lognormal Reliability Function

The reliability for a mission of time , starting at age 0, for the Arrhenius-lognormal model is
determined by:

or:
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There is no closed form solution for the lognormal reliability function. Solutions can be
obtained via the use of standard normal tables. Since the application automatically solves for the
reliability, we will not discuss manual solution methods.

Reliable Life

For the Arrhenius-lognormal model, the reliable life, or the mission duration for a desired reli-
ability goal, is estimated by first solving the reliability equation with respect to time, as fol-
lows:

where:

and:

Since the reliable life, is given by:

Arrhenius-Lognormal Failure Rate

The Arrhenius-lognormal failure rate is given by:
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Parameter Estimation

Maximum Likelihood Estimation Method

The lognormal log-likelihood function for the Arrhenius-lognormal model is as follows:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l is the standard deviation of the natural logarithm of the times-to-failure (unknown, the
first of three parameters to be estimated).

l is the Arrhenius parameter (unknown, the second of three parameters to be estimated).

l is the second Arrhenius parameter (unknown, the third of three parameters to be estim-
ated).
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l is the stress level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for so that

and , where:

and:
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Arrhenius Confidence Bounds

Approximate Confidence Bounds for the Arrhenius-Exponential

There are different methods for computing confidence bounds. Weibull++ utilizes confidence
bounds that are based on the asymptotic theory for maximum likelihood estimates, most com-
monly referred to as the Fisher matrix bounds.

Confidence Bounds on the Mean Life

The Arrhenius-exponential distribution is given by setting in the exponential pdf

equation. The upper and lower bounds on the mean life are then estimated by:

where is defined by:

If is the confidence level (i.e., 95%=0.95), then for the two-sided bounds, and
for the one-sided bounds. The variance of is given by:

or:
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The variances and covariance of and are estimated from the local Fisher matrix (eval-

uated at , as follows:

Confidence Bounds on Reliability

The bounds on reliability for any given time, , are estimated by:

where and are estimated estimated by:

Confidence Bounds on Time

The bounds on time (ML estimate of time) for a given reliability are estimated by first solving
the reliability function with respect to time:

The corresponding confidence bounds are then estimated from:

where and are estimated estimated by:
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Approximate Confidence Bounds for the Arrhenius-Weibull

Bounds on the Parameters

From the asymptotically normal property of the maximum likelihood estimators, and since

and are positive parameters, and can then be treated as normally distributed.
After performing this transformation, the bounds on the parameters can be estimated from:

also:

and:

The variances and covariances of and are estimated from the local Fisher matrix (eval-

uated at , as follows:
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Confidence Bounds on Reliability

The reliability function for the Arrhenius-Weibull model (ML estimate) is given by:

or:

Setting:

or:

The reliability function now becomes:

The next step is to find the upper and lower bounds on

PAGE 90



ACCELERATED LIFE TESTING DATA ANALYSIS ARRHENIUS RELATIONSHIP

where:

or:

The upper and lower bounds on reliability are:

Confidence Bounds on Time

The bounds on time for a given reliability are estimated by first solving the reliability function
with respect to time:

or:

where .
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The upper and lower bounds on are estimated from:

where:

or:

The upper and lower bounds on time can then found by:

Approximate Confidence Bounds for the Arrhenius-Lognormal

Bounds on the Parameters

The lower and upper bounds on are estimated from:

Since the standard deviation, , and the parameter are positive parameters, and

are treated as normally distributed. The bounds are estimated from:
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and:

The variances and covariances of and are estimated from the local Fisher matrix

(evaluated at , as follows:

Bounds on Reliability

The reliability of the lognormal distribution is:

Let then .
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For , , and for The above equation then
becomes:

The bounds on are estimated from:

where:

or:

The upper and lower bounds on reliability are:

Confidence Bounds on Time

The bounds around time, for a given lognormal percentile (unreliability), are estimated by first
solving the reliability equation with respect to time, as follows:

where:
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and:

The next step is to calculate the variance of

or:

The upper and lower bounds are then found by:

Solving for and yields:
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Eyring Relationship
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The Eyring relationship was formulated from quantum mechanics principles, as discussed in
Glasstone et al. [9], and is most often used when thermal stress (temperature) is the acceleration
variable. However, the Eyring relationship is also often used for stress variables other than tem-
perature, such as humidity. The relationship is given by:
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where:

l represents a quantifiable life measure, such as mean life, characteristic life, median life,

life, etc.

l represents the stress level (temperature values are in absolute units: kelvin or
degrees Rankine).

l is one of the model parameters to be determined.

l is another model parameter to be determined.

The Eyring relationship is similar to the Arrhenius relationship. This similarity is more apparent
if it is rewritten in the following way:

or:

The Arrhenius relationship is given by:
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Comparing the above equation to the Arrhenius relationship, it can be seen that the only dif-

ference between the two relationships is the term above. In general, both relationships yield
very similar results. Like the Arrhenius, the Eyring relationship is plotted on a log-reciprocal
paper.

Acceleration Factor

For the Eyring model the acceleration factor is given by:
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Eyring-Exponential

The pdf of the 1-parameter exponential distribution is given by:

It can be easily shown that the mean life for the 1-parameter exponential distribution (presented
in detail here) is given by:

thus:

The Eyring-exponential model pdf can then be obtained by setting :

and substituting for in the exponential pdf equation:

Eyring-Exponential Statistical Properties Summary

Mean or MTTF

The mean, or Mean Time To Failure (MTTF) for the Eyring-exponential is given by:

Median

The median, for the Eyring-exponential model is given by:
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Mode

The mode, for the Eyring-exponential model is

Standard Deviation

The standard deviation, , for the Eyring-exponential model is given by:

Eyring-Exponential Reliability Function

The Eyring-exponential reliability function is given by:

This function is the complement of the Eyring-exponential cumulative distribution function or:

and:

Conditional Reliability

The conditional reliability function for the Eyring-exponential model is given by:
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Reliable Life

For the Eyring-exponential model, the reliable life, or the mission duration for a desired reli-
ability goal, is given by:

or:

Parameter Estimation

Maximum Likelihood Estimation Method

The complete exponential log-likelihood function of the Eyring model is composed of two sum-
mation portions:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the stress level of the group.
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l is the Eyring parameter (unknown, the first of two parameters to be estimated).

l is the second Eyring parameter (unknown, the second of two parameters to be estim-
ated).

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for the parameters and so

that and where:

Eyring-Weibull

The pdf for 2-parameter Weibull distribution is given by:
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The scale parameter (or characteristic life) of the Weibull distribution is . The Eyring-Weibull

model pdf can then be obtained by setting :

or:

Substituting for into the Weibull pdf yields:

Eyring-Weibull Statistical Properties Summary

Mean or MTTF

The mean, , or Mean Time To Failure (MTTF) for the Eyring-Weibull model is given by:

where is the gamma function evaluated at the value of .

Median

The median, for the Eyring-Weibull model is given by:
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Mode

The mode, for the Eyring-Weibull model is given by:

Standard Deviation

The standard deviation, for the Eyring-Weibull model is given by:

Eyring-Weibull Reliability Function

The Eyring-Weibull reliability function is given by:

Conditional Reliability Function

The Eyring-Weibull conditional reliability function at a specified stress level is given by:

or:
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Reliable Life

For the Eyring-Weibull model, the reliable life, , of a unit for a specified reliability and start-
ing the mission at age zero is given by:

Eyring-Weibull Failure Rate Function

The Eyring-Weibull failure rate function, , is given by:

Parameter Estimation

Maximum Likelihood Estimation Method

The Eyring-Weibull log-likelihood function is composed of two summation portions:

where:

and:
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l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l is the Weibull shape parameter (unknown, the first of three parameters to be estimated).

l is the Eyring parameter (unknown, the second of three parameters to be estimated).

l is the second Eyring parameter (unknown, the third of three parameters to be estimated).

l is the stress level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for the parameters and so

that and

where:
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Eyring-Weibull Example

Consider the following times-to-failure data at three different stress levels.

The data set was entered into the life-stress data folio and analyzed using the Eyring-Weibull
model, yielding:

Once the parameters of the model are defined, other life measures can be directly obtained using

PAGE 107



ACCELERATED LIFE TESTING DATA ANALYSIS EYRING RELATIONSHIP

the appropriate equations. For example, the MTTF can be obtained for the use stress level of
323 K by using:

or:

Eyring-Lognormal

The pdf of the lognormal distribution is given by:

where:

and

l mean of the natural logarithms of the times-to-failure.

l standard deviation of the natural logarithms of the times-to-failure.

The Eyring-lognormal model can be obtained first by setting :

or:
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Thus:

Substituting this into the lognormal pdf yields the Eyring-lognormal model pdf:

Eyring-Lognormal Statistical Properties Summary

The Mean

The mean life of the Eyring-lognormal model (mean of the times-to-failure), , is given by:

The mean of the natural logarithms of the times-to-failure, , in terms of and is given
by:

The Median

The median of the Eyring-lognormal model is given by:

The Standard Deviation

The standard deviation of the Eyring-lognormal model (standard deviation of the times-to-fail-
ure), , is given by:
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The standard deviation of the natural logarithms of the times-to-failure, , in terms of and
is given by:

The Mode

The mode of the Eyring-lognormal model is given by:

Eyring-Lognormal Reliability Function

The reliability for a mission of time , starting at age 0, for the Eyring-lognormal model is
determined by:

or:

There is no closed form solution for the lognormal reliability function. Solutions can be
obtained via the use of standard normal tables. Since the application automatically solves for the
reliability we will not discuss manual solution methods.

Reliable Life

For the Eyring-lognormal model, the reliable life, or the mission duration for a desired reli-
ability goal, is estimated by first solving the reliability equation with respect to time, as
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follows:

where:

and:

Since the reliable life, is given by:

Eyring-Lognormal Failure Rate

The Eyring-lognormal failure rate is given by:

Parameter Estimation

Maximum Likelihood Estimation Method

The complete Eyring-lognormal log-likelihood function is composed of two summation por-
tions:

where:
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and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l is the standard deviation of the natural logarithm of the times-to-failure (unknown, the
first of three parameters to be estimated).

l is the Eyring parameter (unknown, the second of three parameters to be estimated).

l is the second Eyring parameter (unknown, the third of three parameters to be estimated).

l is the stress level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.
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The solution (parameter estimates) will be found by solving for so that

and  :

and:

Generalized Eyring Relationship

The generalized Eyring relationship is used when temperature and a second non-thermal stress
(e.g. voltage) are the accelerated stresses of a test and their interaction is also of interest. This
relationship is given by:

where:

l is the temperature (in absolute units).

l is the non-thermal stress (i.e., voltage, vibration, etc.).
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are the parameters to be determined.

The Eyring relationship is a simple case of the generalized Eyring relationship where
and Note that the generalized Eyring relationship includes

the interaction term of and as described by the term. In other words, this model can
estimate the effect of changing one of the factors depending on the level of the other factor.

Acceleration Factor

Most models in actual use do not include any interaction terms, therefore, the acceleration factor
can be computed by multiplying the acceleration factors obtained by changing each factor while
keeping the other factors constant. In the case of the generalized Eyring relationship, the accel-
eration factor is derived differently.

The acceleration factor for the generalized Eyring relationship is given by:

where:

l is the life at use stress level.

l is the life at the accelerated stress level.

l is the use temperature level.

l is the accelerated temperature level.

l is the accelerated non-thermal level.

l is the use non-thermal level.

Generalized Eyring-Exponential

By setting , the exponential pdf becomes:
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Generalized Eyring-Exponential Reliability Function

The generalized Eyring exponential model reliability function is given by:

Parameter Estimation

Substituting the generalized Eyring model into the lognormal log-likelihood equation yields:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l are parameters to be estimated.

l is the temperature level of the group.

l is the non-thermal stress level of the group.
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l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for the parameters and

so that and .

Generalized Eyring-Weibull

By setting to the Weibull pdf, the generalized Eyring Weibull model is given
by:

Generalized Eyring-Weibull Reliability Function

The generalized Eyring Weibull reliability function is given by:

Parameter Estimation

Substituting the generalized Eyring model into the Weibull log-likelihood equation yields:
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where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l are parameters to be estimated.

l is the temperature level of the group.

l is the non-thermal stress level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.
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l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for the parameters and

so that and .

Generalized Eyring-Lognormal

By setting to the lognormal pdf, the generalized Erying lognormal model is
given by:

where:

Generalized Eyring-Lognormal Reliability Function

The generalized Erying lognormal reliability function is given by:

Parameter Estimation

Substituting the generalized Eyring model into the lognormal log-likelihood equation yields:

where:
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and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l are parameters to be estimated.

l is the temperature level of the group.

l is the non-thermal stress level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for the parameters and

so that and .

Generalized Eyring Example

The following data set represents failure times (in hours) obtained from an electronics epoxy
packaging accelerated life test performed to understand the synergy between temperature and
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and . The data set is modeled using the lognormal distribution and the generalized
Eyring model.

The probability plot at the use conditions is shown next.
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The information is estimated to be 1967.2 hours, as shown next.
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Eyring Confidence Bounds

Approximate Confidence Bounds for the Eyring-Exponential

Confidence Bounds on Mean Life

The mean life for the Eyring relationship is given by setting . The upper

and lower bounds on the mean life (ML estimate of the mean life) are estimated by:

where is defined by:
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If is the confidence level, then for the two-sided bounds, and for the
one-sided bounds. The variance of is given by:

or:

The variances and covariance of and are estimated from the local Fisher matrix (eval-

uated at , as follows:

Confidence Bounds on Reliability

The bounds on reliability at a given time, , are estimated by:

Confidence Bounds on Time

The bounds on time (ML estimate of time) for a given reliability are estimated by first solving
the reliability function with respect to time:

The corresponding confidence bounds are estimated from:
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Approximate Confidence Bounds for the Eyring-Weibull

Bounds on the Parameters

From the asymptotically normal property of the maximum likelihood estimators, and since is

a positive parameter, can then be treated as normally distributed. After performing this
transformation, the bounds on the parameters are estimated from:

also:

and:

The variances and covariances of and are estimated from the Fisher matrix (evaluated

at as follows:
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Confidence Bounds on Reliability

The reliability function for the Eyring-Weibull model (ML estimate) is given by:

or:

Setting:

or:

The reliability function now becomes:

The next step is to find the upper and lower bounds on  :
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where:

or:

The upper and lower bounds on reliability are:

Confidence Bounds on Time

The bounds on time (ML estimate of time) for a given reliability are estimated by first solving
the reliability function with respect to time:

or:
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where . The upper and lower bounds on are then estimated from:

where:

or:

The upper and lower bounds on time are then found by:

Approximate Confidence Bounds for the Eyring-Lognormal

Bounds on the Parameters

The lower and upper bounds on and are estimated from:

and:
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Since the standard deviation, is a positive parameter, is treated as normally dis-
tributed, and the bounds are estimated from:

The variances and covariances of and are estimated from the local Fisher matrix

(evaluated at , as follows:

where:

Bounds on Reliability

The reliability of the lognormal distribution is given by:

Let then
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For , , and for The above equation then
becomes:

The bounds on are estimated from:

where:

or:

The upper and lower bounds on reliability are:

Confidence Bounds on Time

The bounds around time for a given lognormal percentile (unreliability) are estimated by first
solving the reliability equation with respect to time as follows:

where:
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and:

The next step is to calculate the variance of

or:

The upper and lower bounds are then found by:

Solving for and yields:
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Inverse Power Law Relationship
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The inverse power law (IPL) model (or relationship) is commonly used for non-thermal accel-
erated stresses and is given by:

where:

l represents a quantifiable life measure, such as mean life, characteristic life, median life,

life, etc.
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l represents the stress level.

l is one of the model parameters to be determined,

l is another model parameter to be determined.

The inverse power law appears as a straight line when plotted on a log-log paper. The equation
of the line is given by:

Plotting methods are widely used in estimating the parameters of the inverse power law rela-
tionship since obtaining and is as simple as finding the slope and the intercept in the
above equation.
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A Look at the Parameter n

The parameter in the inverse power relationship is a measure of the effect of the stress on the
life. As the absolute value of increases, the greater the effect of the stress. Negative values of

indicate an increasing life with increasing stress. An absolute value of approaching zero
indicates small effect of the stress on the life, with no effect (constant life with stress) when
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Acceleration Factor

For the IPL relationship the acceleration factor is given by:

where:

l is the life at use stress level.

l is the life at the accelerated stress level.

l is the use stress level.

l is the accelerated stress level.
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IPL-Exponential

The IPL-exponential model can be derived by setting in the exponential pdf, yield-
ing the following IPL-exponential pdf:

Note that this is a 2-parameter model. The failure rate (the parameter of the exponential dis-

tribution) of the model is simply and is only a function of stress.

IPL-Exponential Statistical Properties Summary

Mean or MTTF

The mean, or Mean Time To Failure (MTTF) for the IPL-exponential relationship is given
by:
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Note that the MTTF is a function of stress only and is simply equal to the IPL relationship
(which is the original assumption), when using the exponential distribution.

Median

The median, for the IPL-exponential model is given by:

Mode

The mode, for the IPL-exponential model is given by:

Standard Deviation

The standard deviation, , for the IPL-exponential model is given by:

IPL-Exponential Reliability Function

The IPL-exponential reliability function is given by:

This function is the complement of the IPL-exponential cumulative distribution function:

or:
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Conditional Reliability

The conditional reliability function for the IPL-exponential model is given by:

Reliable Life

For the IPL-exponential model, the reliable life or the mission duration for a desired reliability
goal, is given by:

or:

Parameter Estimation

Maximum Likelihood Parameter Estimation

Substituting the inverse power law relationship into the exponential log-likelihood equation
yields:

where:
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and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the stress level of the group.

l is the IPL parameter (unknown, the first of two parameters to be estimated).

l is the second IPL parameter (unknown, the second of two parameters to be estimated).

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for the parameters so that

and , where:
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IPL-Weibull

The IPL-Weibull model can be derived by setting in the Weibull pdf, yielding the
following IPL-Weibull pdf:

This is a three parameter model. Therefore it is more flexible but it also requires more laborious
techniques for parameter estimation. The IPL-Weibull model yields the IPL-exponential model
for

IPL-Weibull Statistical Properties Summary

Mean or MTTF

The mean, (also called ), of the IPL-Weibull model is given by:

where is the gamma function evaluated at the value of .

Median

The median, of the IPL-Weibull model is given by:

Mode

The mode, of the IPL-Weibull model is given by:

PAGE 139



ACCELERATED LIFE TESTING DATA ANALYSIS INVERSE POWER LAW RELATIONSHIP

Standard Deviation

The standard deviation, of the IPL-Weibull model is given by:

IPL-Weibull Reliability Function

The IPL-Weibull reliability function is given by:

Conditional Reliability Function

The IPL-Weibull conditional reliability function at a specified stress level is given by:

or:

Reliable Life

For the IPL-Weibull model, the reliable life, , of a unit for a specified reliability and starting
the mission at age zero is given by:

IPL-Weibull Failure Rate Function

The IPL-Weibull failure rate function, , is given by:
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Parameter Estimation

Maximum Likelihood Estimation Method

Substituting the inverse power law relationship into the Weibull log-likelihood function yields:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l is the Weibull shape parameter (unknown, the first of three parameters to be estimated).

l is the IPL parameter (unknown, the second of three parameters to be estimated).

l is the second IPL parameter (unknown, the third of three parameters to be estimated).

l is the stress level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.
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l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for so that ,

and , where:

IPL-Weibull Example

Consider the following times-to-failure data at two different stress levels.

The data set was analyzed jointly in a life-stress data folio using the IPL-Weibull model, with a
complete MLE solution over the entire data set. The analysis yields:
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IPL-Lognormal

The pdf for the Inverse Power Law relationship and the lognormal distribution is given next.

The pdf of the lognormal distribution is given by:

where:

and:

= times-to-failure.

= mean of the natural logarithms of the times-to-failure.

= standard deviation of the natural logarithms of the times-to-failure.

The median of the lognormal distribution is given by:

The IPL-lognormal model pdf can be obtained first by setting in the lognormal
pdf. Therefore:

or:

Thus:
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So the IPL-lognormal model pdf is:

IPL-Lognormal Statistical Properties Summary

The Mean

The mean life of the IPL-lognormal model (mean of the times-to-failure), , is given by:

The mean of the natural logarithms of the times-to-failure, , in terms of and is given
by:

The Standard Deviation

The standard deviation of the IPL-lognormal model (standard deviation of the times-to-failure),
, is given by:

The standard deviation of the natural logarithms of the times-to-failure, , in terms of and
is given by:

The Mode

The mode of the IPL-lognormal model is given by:
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IPL-Lognormal Reliability

The reliability for a mission of time T, starting at age 0, for the IPL-lognormal model is determ-
ined by:

or:

Reliable Life

The reliable life, or the mission duration for a desired reliability goal, is estimated by first
solving the reliability equation with respect to time, as follows:

where:

and:

Since the reliable life, , is given by:

Lognormal Failure Rate

The lognormal failure rate is given by:
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Parameter Estimation

Maximum Likelihood Estimation Method

The complete IPL-lognormal log-likelihood function is:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l is the standard deviation of the natural logarithm of the times-to-failure (unknown, the
first of three parameters to be estimated).

l is the IPL parameter (unknown, the second of three parameters to be estimated).

l is the second IPL parameter (unknown, the third of three parameters to be estimated).

l is the stress level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.
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l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for , , so that

, and :

and:

IPL and the Coffin-Manson Relationship

In accelerated life testing analysis, thermal cycling is commonly treated as a low-cycle fatigue
problem, using the inverse power law relationship. Coffin and Manson suggested that the num-
ber of cycles-to-failure of a metal subjected to thermal cycling is given by Nelson [28]:
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where:

l is the number of cycles to failure.

l is a constant, characteristic of the metal.

l is another constant, also characteristic of the metal.

l is the range of the thermal cycle.

This relationship is basically the inverse power law relationship, where the stress is sub-
stituted by the range . This is an attempt to simplify the analysis of a time-varying stress
test by using a constant stress model. It is a very commonly used methodology for thermal cyc-
ling and mechanical fatigue tests. However, by performing such a simplification, the following
assumptions and shortcomings are inevitable. First, the acceleration effects due to the stress rate
of change are ignored. In other words, it is assumed that the failures are accelerated by the
stress difference and not by how rapidly this difference occurs. Secondly, the acceleration
effects due to stress relaxation and creep are ignored.

Example

In this example the use of the Coffin-Manson relationship will be illustrated. This is a very
simple example which can be repeated at any time. The reader is encouraged to perform this
test.

Product: ACME Paper Clip Model 4456

Reliability Target: 99% at a 90% confidence after 30 cycles of 45°

After consulting with our paper-clip engineers, the acceleration stress was determined to be the
angle to which the clips are bent. Two bend stresses of 90° and 180° were used. A sample of six
paper clips was tested to failure at both 90° and 180° bends with the following data obtained.
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The test was performed as shown in the next figures (a side-view of the paper-clip is shown).

Using the IPL-lognormal model, determine whether the reliability target was met.

Solution

By using the IPL relationship to analyze the data, we are actually using a constant stress model
to analyze a cycling process. Caution must be exercised when performing the test. The rate of
change in the angle must be constant and equal for both the 90° and 180° bends and constant
and equal to the rate of change in the angle for the use life of 45° bend. Rate effects are influ-
encing the life of the paper clip. By keeping the rate constant and equal at all stress levels, we
can then eliminate these rate effects from our analysis. Otherwise the analysis will not be valid.

The data were entered and analyzed using ReliaSoft's Weibull++.
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The parameters of the IPL-lognormal model were estimated to be:

Using the QCP, the 90% lower 1-sided confidence bound on reliability after 30 cycles for a 45°
bend was estimated to be , as shown below.
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This meets the target reliability of 99%.

IPL Confidence Bounds

Approximate Confidence Bounds on IPL-Exponential

Confidence Bounds on the Mean Life

From the inverse power law relationship the mean life for the exponential distribution is given

by setting . The upper and lower bounds on the mean life (ML
estimate of the mean life) are estimated by:
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where is defined by:

If is the confidence level, then for the two-sided bounds, and for the
one-sided bounds. The variance of is given by:

or:

The variances and covariance of and are estimated from the Fisher matrix (evaluated at

as follows:

Confidence Bounds on Reliability

The bounds on reliability at a given time, , are estimated by:
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Confidence Bounds on Time

The bounds on time (ML estimate of time) for a given reliability are estimated by first solving
the reliability function with respect to time:

The corresponding confidence bounds are estimated from:

Approximate Confidence Bounds on IPL-Weibull

Bounds on the Parameters

Using the same approach as previously discussed (     and positive parameters):

and:
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The variances and covariances of and are estimated from the local Fisher matrix (eval-

uated at as follows:

Confidence Bounds on Reliability

The reliability function (ML estimate) for the IPL-Weibull model is given by:

or:

Setting:

or:

The reliability function now becomes:

The next step is to find the upper and lower bounds on  :
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where:

or:

The upper and lower bounds on reliability are:

Confidence Bounds on Time

The bounds on time for a given reliability (ML estimate of time) are estimated by first solving
the reliability function with respect to time:

or:

where The upper and lower bounds on are estimated from:

where:
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or:

The upper and lower bounds on time are then found by:

Approximate Confidence Bounds on IPL-Lognormal

Bounds on the Parameters

Since the standard deviation, , and are positive parameters, then and
are treated as normally distributed, and the bounds are estimated from:

and:

The lower and upper bounds on , are estimated from:
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The variances and covariances of and are estimated from the local Fisher matrix

(evaluated at , as follows:

where:

Bounds on Reliability

The reliability of the lognormal distribution is:

Let then

For , , and for The above equation then
becomes:

The bounds on are estimated from:
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where:

.

or:

The upper and lower bounds on reliability are:

Confidence Bounds on Time

The bounds around time, for a given lognormal percentile (unreliability), are estimated by first
solving the reliability equation with respect to time, as follows:

where:

and:
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The next step is to calculate the variance of

or:

The upper and lower bounds are then found by:

Solving for and yields:
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Temperature-Humidity Relationship
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The Temperature-Humidity (T-H) relationship, a variation of the Eyring relationship, has been
proposed for predicting the life at use conditions when temperature and humidity are the accel-
erated stresses in a test. This combination model is given by:

where:

l is one of the three parameters to be determined.
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l is the second of the three parameters to be determined (also known as the activation
energy for humidity).

l is a constant and the third of the three parameters to be determined.

l is the relative humidity (decimal or percentage).

l is temperature (in absolute units).

The T-H relationship can be linearized and plotted on a Life vs. Stress plot. The relationship is
linearized by taking the natural logarithm of both sides in the T-H relationship, or:

Since life is now a function of two stresses, a Life vs. Stress plot can only be obtained by keep-
ing one of the two stresses constant and varying the other one. Doing so will yield a straight line
where the term for the stress which is kept at a fixed value becomes another constant (in addi-

tion to the constant). In the next two figures, data obtained from a temperature and
humidity test were analyzed and plotted on Arrhenius paper. In the first figure, life is plotted
versus temperature with relative humidity held at a fixed value. In the second figure, life is plot-
ted versus relative humidity with temperature held at a fixed value.
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Note that the Life vs. Stress plots are plotted on a log-reciprocal scale. Also note that the points
shown in these plots represent the life characteristics at the test stress levels (the data set was fit-

ted to a Weibull distribution, thus the points represent the scale parameter, . For example, the
points shown in the first figure represent at each of the test temperature levels (two tem-
perature levels were considered in this test).

A look at the Parameters Phi and b

Depending on which stress type is kept constant, it can be seen from the linearized T-H rela-
tionship that either the parameter or the parameter is the slope of the resulting line. If, for

example, the humidity is kept constant then is the slope of the life line in a Life vs. Tem-
perature plot. The steeper the slope, the greater the dependency of product life to the tem-
perature. In other words, is a measure of the effect that temperature has on the life, and is a

measure of the effect that relative humidity has on the life. The larger the value of the higher

the dependency of the life on the temperature. Similarly, the larger the value of the higher
the dependency of the life on the humidity.
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T-H Data

When using the T-H relationship, the effect of both temperature and humidity on life is sought.
For this reason, the test must be performed in a combination manner between the different stress
levels of the two stress types. For example, assume that an accelerated test is to be performed at
two temperature and two humidity levels. The two temperature levels were chosen to be 300K
and 343K. The two humidity levels were chosen to be 0.6 and 0.8. It would be wrong to per-
form the test at (300K, 0.6) and (343K, 0.8). Doing so would not provide information about the
temperature-humidity effects on life. This is because both stresses are increased at the same
time and therefore it is unknown which stress is causing the acceleration on life. A possible com-
bination that would provide information about temperature-humidity effects on life would be
(300K, 0.6), (300K, 0.8) and (343K, 0.8). It is clear that by testing at (300K, 0.6) and (300K,
0.8) the effect of humidity on life can be determined (since temperature remained constant). Sim-
ilarly the effects of temperature on life can be determined by testing at (300K, 0.8) and (343K,
0.8) since humidity remained constant.

Acceleration Factor

The acceleration factor for the T-H relationship is given by:

where:

l is the life at use stress level.

l is the life at the accelerated stress level.

l is the use temperature level.

l is the accelerated temperature level.

l is the accelerated humidity level.

l is the use humidity level.

PAGE 164



ACCELERATED LIFE TESTING DATA ANALYSIS TEMPERATURE-HUMIDITY RELATIONSHIP

The acceleration Factor is plotted versus stress in the same manner used to create the Life vs.
Stress plots. That is, one stress type is kept constant and the other is varied as shown in the next
two figures.
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T-H Exponential

By setting in the exponential pdf we can obtain the T-H exponential pdf:

T-H Exponential Statistical Properties Summary

Mean or MTTF

The mean, or Mean Time To Failure (MTTF) for the T-H exponential model is given by:

Substituting the T-H exponential pdf equation yields:
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Median

The median, for the T-H exponential model is given by:

Mode

The mode, for the T-H exponential model is given by:

Standard Deviation

The standard deviation, , for the T-H exponential model is given by:

T-H Exponential Reliability Function

The T-H exponential reliability function is given by:

This function is the complement of the T-H exponential cumulative distribution function or:

and:
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Conditional Reliability

The conditional reliability function for the T-H exponential model is given by:

Reliable Life

For the T-H exponential model, the reliable life, or the mission duration for a desired reliability
goal, is given by:

or:

Parameter Estimation

Maximum Likelihood Estimation Method

Substituting the T-H model into the exponential log-likelihood equation yields:

where:
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and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l is the T-H parameter (unknown, the first of three parameters to be estimated).

l is the second T-H parameter (unknown, the second of three parameters to be estimated).

l is the third T-H parameter (unknown, the third of three parameters to be estimated).

l is the temperature level of the group.

l is the relative humidity level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for the parameters and so

that and .
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T-H Weibull

By setting in the Weibull pdf, the T--H Weibull model's pdf is given by:

T-H Weibull Statistical Properties Summary

Mean or MTTF

The mean, (also called ), of the T-H Weibull model is given by:

where is the gamma function evaluated at the value of .

Median

The median, of the T-H Weibull model is given by:

Mode

The mode, of the T-H Weibull model is given by:

Standard Deviation

The standard deviation, of the T-H Weibull model is given by:
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T-H Weibull Reliability Function

The T-H Weibull reliability function is given by:

Conditional Reliability Function

The T-H Weibull conditional reliability function at a specified stress level is given by:

or:

Reliable Life

For the T-H Weibull model, the reliable life, , of a unit for a specified reliability and starting
the mission at age zero is given by:
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T-H Weibull Failure Rate Function

The T-H Weibull failure rate function, , is given by:

Parameter Estimation

Maximum Likelihood Estimation Method

Substituting the T-H model into the Weibull log-likelihood function yields:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l is the Weibull shape parameter (unknown, the first of four parameters to be estimated).

l is the T-H parameter (unknown, the second of four parameters to be estimated).
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l is the second T-H parameter (unknown, the third of four parameters to be estimated).

l is the third T-H parameter (unknown, the fourth of four parameters to be estimated).

l is the temperature level of the group.

l is the relative humidity level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for the parameters and

so that and .

T-H Weibull Example

The following data were collected after testing twelve electronic devices at different tem-
perature and humidity conditions:
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Using Weibull++, the following results were obtained:

A probability plot for the entered data is shown next.
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Note that three lines are plotted because there are three combinations of stresses, namely,
(398K, 0.4), (378K, 0.8) and (378K, 0.4).

Given the use stress levels, time estimates can be obtained for a specified probability. A Life vs.
Stress plot can be obtained if one of the stresses is kept constant. For example, the following pic-
ture shows a Life vs. Temperature plot at a constant humidity of 0.4.
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T-H Lognormal

The pdf of the lognormal distribution is given by:

where:

and:

l mean of the natural logarithms of the times-to-failure.
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l standard deviation of the natural logarithms of the times-to-failure.

The median of the lognormal distribution is given by:

The T-H lognormal model pdf can be obtained first by setting .
Therefore:

or:

Thus:

Substituting the above equation into the lognormal pdf yields the T-H lognormal model pdf or:

T-H Lognormal Statistical Properties Summary

The Mean

l The mean life of the T-H lognormal model (mean of the times-to-failure), , is given by:

l The mean of the natural logarithms of the times-to-failure, , in terms of and is
given by:
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The Standard Deviation

l The standard deviation of the T-H lognormal model (standard deviation of the times-to-fail-
ure), , is given by:

l The standard deviation of the natural logarithms of the times-to-failure, , in terms of
and is given by:

The Mode

l The mode of the T-H lognormal model is given by:

T-H Lognormal Reliability

The reliability for a mission of time , starting at age 0, for the T-H lognormal model is determ-
ined by:

or:
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There is no closed form solution for the lognormal reliability function. Solutions can be
obtained via the use of standard normal tables. Since the application automatically solves for the
reliability, we will not discuss manual solution methods.

Reliable Life

For the T-H lognormal model, the reliable life, or the mission duration for a desired reliability
goal, is estimated by first solving the reliability equation with respect to time, as follows:

where:

and:

Since the reliable life, is given by:

T-H Lognormal Failure Rate

The lognormal failure rate is given by:
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Parameter Estimation

Maximum Likelihood Estimation Method

The complete T-H lognormal log-likelihood function is:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l is the standard deviation of the natural logarithm of the times-to-failure (unknown, the
first of four parameters to be estimated).

l is the first T-H parameter (unknown, the second of four parameters to be estimated).

l is the second T-H parameter (unknown, the third of four parameters to be estimated).

l is the third T-H parameter (unknown, the fourth of four parameters to be estimated).

l is the stress level for the first stress type (i.e., temperature) of the group.
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l is the stress level for the second stress type (i.e., relative humidity) of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for so that

and .

T-H Confidence Bounds

Approximate Confidence Bounds for the T-H Exponential

Confidence Bounds on the Mean Life

The mean life for the T-H exponential distribution is given by Eqn. (Temp-Hum) by setting

. The upper and lower bounds on the mean life (ML estimate of the
mean life) are estimated by:
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where is defined by:

If is the confidence level, then for the two-sided bounds, and for the
one-sided bounds. The variance of is given by:

or:

The variances and covariance of , and are estimated from the local Fisher matrix (eval-

uated at as follows:

Confidence Bounds on Reliability

The bounds on reliability at a given time, , are estimated by:
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Confidence Bounds on Time

The bounds on time (ML estimate of time) for a given reliability are estimated by first solving
the reliability function with respect to time or:

The corresponding confidence bounds are estimated from:

Approximate Confidence Bounds for the T-H Weibull

Bounds on the Parameters

Using the same approach as previously discussed (     and positive parameters):
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and:

The variances and covariances of and are estimated from the local Fisher matrix

(evaluated at as follows:

where:

Confidence Bounds on Reliability

The reliability function (ML estimate) for the T-H Weibull model is given by:
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or:

Setting:

or:

The reliability function now becomes:

The next step is to find the upper and lower bounds on  :

where:
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or:

The upper and lower bounds on reliability are:

Confidence Bounds on Time

The bounds on time (ML estimate of time) for a given reliability are estimated by first solving
the reliability function with respect to time as follows:

or:

where

The upper and lower bounds on are estimated from:
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where:

or:

The upper and lower bounds on time are then found by:

Approximate Confidence Bounds for the T-H Lognormal

Bounds on the Parameters

Since the standard deviation, , and are positive parameters, and are
treated as normally distributed and the bounds are estimated from:

and:
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The lower and upper bounds on and are estimated from:

and:

The variances and covariances of , and are estimated from the local Fisher matrix

(evaluated at , , as follows:

where:
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Bounds on Reliability

The reliability of the lognormal distribution is given by:

Let then For ,

, and for The above equation then becomes:

The bounds on are estimated from:

where:

or:
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The upper and lower bounds on reliability are:

Confidence Bounds on Time

The bounds around time, for a given lognormal percentile (unreliability), are estimated by first
solving the reliability equation with respect to time, as follows:

where:

and:

The next step is to calculate the variance of as follows:

or:
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The upper and lower bounds are then found by:

Solving for and yields:
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Temperature-NonThermal
Relationship

IN THIS CHAPTER

A look at the Parameters B and n 195

Acceleration Factor 195

T-NT Exponential 198
T-NT Exponential Statistical Properties Summary 198
Parameter Estimation 200

T-NT Weibull 202
T-NT Weibull Statistical Properties Summary 202
Parameter Estimation 204

T-NT Lognormal 205
T-N-T Lognormal Statistical Properties Summary 207
Parameter Estimation 209

T-NT Confidence Bounds 213
Approximate Confidence Bounds for the T-NT Exponential 213
Approximate Confidence Bounds for the T-NT Weibull 215
Approximate Confidence Bounds for the T-NT Lognormal 219

When temperature and a second non-thermal stress (e.g., voltage) are the accelerated stresses of
a test, then the Arrhenius and the inverse power law relationships can be combined to yield the
Temperature-NonThermal (T-NT) relationship. This relationship is given by:

where:
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l is the non-thermal stress (i.e., voltage, vibration, etc.)

l is the temperature (in absolute units).

l , , are the parameters to be determined.

The T-NT relationship can be linearized and plotted on a Life vs. Stress plot. The relationship is
linearized by taking the natural logarithm of both sides in the T-NT relationship or:

Since life is now a function of two stresses, a Life vs. Stress plot can only be obtained by keep-
ing one of the two stresses constant and varying the other one. Doing so will yield the straight
line described by the above equation, where the term for the stress which is kept at a fixed value

becomes another constant (in addition to the constant). When the non-thermal stress is
kept constant, then the linearized T-NT relationship becomes:

This is the Arrhenius equation and it is plotted on a log-reciprocal scale. When the thermal
stress is kept constant, then the linearized T-NT relationship becomes:

This is the inverse power law equation and it is plotted on a log-log scale. In the next two fig-
ures, data obtained from a temperature and voltage test were analyzed and plotted on a log-recip-
rocal scale. In the first figure, life is plotted versus temperature, with voltage held at a fixed
value. In the second figure, life is plotted versus voltage, with temperature held at a fixed value.
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A look at the Parameters B and n

Depending on which stress type is kept constant, it can be seen from the linearized T-NT rela-
tionship that either the parameter or the parameter is the slope of the resulting line. If, for
example, the non-thermal stress is kept constant then is the slope of the life line in a Life vs.
Temperature plot. The steeper the slope, the greater the dependency of the product's life to the
temperature. In other words, is a measure of the effect that temperature has on the life and

is a measure of the effect that the non-thermal stress has on the life. The larger the value of
the higher the dependency of the life on the temperature. Similarly, the larger the value of
the higher the dependency of the life on the non-thermal stress.

Acceleration Factor

The acceleration factor for the T-NT relationship is given by:
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where:

l is the life at use stress level.

l is the life at the accelerated stress level.

l is the use temperature level.

l is the accelerated temperature level.

l is the accelerated non-thermal level.

l is the use non-thermal level.

The acceleration factor is plotted versus stress in the same manner used to create the Life vs.
Stress plots. That is, one stress type is kept constant and the other is varied.
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T-NT Exponential

By setting , the exponential pdf becomes:

T-NT Exponential Statistical Properties Summary

Mean or MTTF

The mean, or Mean Time To Failure (MTTF) for the T-NT exponential model is given by:
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Median

The median, for the T-NT exponential model is given by:

Mode

The mode, for the T-NT exponential model is given by:

Standard Deviation

The standard deviation, , for the T-NT exponential model is given by:

T-NT Exponential Reliability Function

The T-NT exponential reliability function is given by:

This function is the complement of the T-NT exponential cumulative distribution function or:

and,
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Conditional Reliability

The conditional reliability function for the T-NT exponential model is given by,

Reliable Life

For the T-NT exponential model, the reliable life, or the mission duration for a desired reli-
ability goal, , is given by:

or:

Parameter Estimation

Maximum Likelihood Estimation Method

Substituting the T-NT relationship into the exponential log-likelihood equation yields:

where:
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and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l is the T-NT parameter (unknown, the first of three parameters to be estimated).

l is the second T-NT parameter (unknown, the second of three parameters to be estim-
ated).

l is the third T-NT parameter (unknown, the third of three parameters to be estimated).

l is the temperature level of the group.

l is the non-thermal stress level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.
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The solution (parameter estimates) will be found by solving for the parameters and so

that and .

T-NT Weibull

By setting , the T-NT Weibull model is given by:

T-NT Weibull Statistical Properties Summary

Mean or MTTF

The mean, , for the T-NT Weibull model is given by:

where is the gamma function evaluated at the value of .

Median

The median, for the T-NT Weibull model is given by:

Mode

The mode, for the T-NT Weibull model is given by:
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Standard Deviation

The standard deviation, for the T-NT Weibull model is given by:

T-NT Weibull Reliability Function

The T-NT Weibull reliability function is given by:

Conditional Reliability Function

The T-NT Weibull conditional reliability function at a specified stress level is given by:

or:
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Reliable Life

For the T-NT Weibull model, the reliable life, , of a unit for a specified reliability and start-
ing the mission at age zero is given by:

T-NT Weibull Failure Rate Function

The T-NT Weibull failure rate function, , is given by:

Parameter Estimation

Maximum Likelihood Estimation Method

Substituting the T-NT relationship into the Weibull log-likelihood function yields:

where:

and:
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l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l is the Weibull shape parameter (unknown, the first of four parameters to be estimated).

l is the first T-NT parameter (unknown, the second of four parameters to be estimated).

l is the second T-NT parameter (unknown, the third of four parameters to be estimated).

l is the third T-NT parameter (unknown, the fourth of four parameters to be estimated).

l is the temperature level of the group.

l is the non-thermal stress level of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for the parameters and

so that and .

T-NT Lognormal

The pdf of the lognormal distribution is given by:
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where:

and:

l times-to-failure.

l mean of the natural logarithms of the times-to-failure.

l standard deviation of the natural logarithms of the times-to-failure.

The median of the lognormal distribution is given by:

The T-NT lognormal model pdf can be obtained by setting . Therefore:

or:

Thus:

Substituting the above equation into the lognormal pdf yields the T-NT lognormal model pdf or:
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T-N-T Lognormal Statistical Properties Summary

The Mean

The mean life of the T-NT lognormal model (mean of the times-to-failure), , is given by:

The mean of the natural logarithms of the times-to-failure, , in terms of and is given
by:

The Standard Deviation

The standard deviation of the T-NT lognormal model (standard deviation of the times-to-fail-
ure), , is given by:

The standard deviation of the natural logarithms of the times-to-failure, , in terms of and
is given by:

The Mode

The mode of the T-NT lognormal model is given by:
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T-NT Lognormal Reliability

For the T-NT lognormal model, the reliability for a mission of time , starting at age 0, for the
T-NT lognormal model is determined by:

or:

Reliable Life

For the T-NT lognormal model, the reliable life, or the mission duration for a desired reliability
goal, is estimated by first solving the reliability equation with respect to time, as follows:

where:

and:

Since the reliable life, , is given by:
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Lognormal Failure Rate

The T-NT lognormal failure rate is given by:

Parameter Estimation

Maximum Likelihood Estimation Method

The complete T-NT lognormal log-likelihood function is:

where:

and:
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l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure data points in the time-to-failure data group.

l is the standard deviation of the natural logarithm of the times-to-failure (unknown, the
first of four parameters to be estimated).

l is the first T-NT parameter (unknown, the second of four parameters to be estimated).

l is the second T-NT parameter (unknown, the third of four parameters to be estimated).

l is the third T-NT parameter (unknown, the fourth of four parameters to be estimated).

l is the stress level for the first stress type (i.e., temperature) of the group.

l is the stress level for the second stress type (i.e., non-thermal) of the group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

The solution (parameter estimates) will be found by solving for so that

and .

T-NT Lognormal Example

12 electronic devices were put into a continuous accelerated life test and the following data
were collected.
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Using Weibull++ and the T-NT lognormal model, the following parameters were obtained:

A probability plot, with the 2-sided 90% confidence bounds for the use stress levels of 323K
and 2V, is shown next.
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An acceleration factor plot, in which one of the stresses must be kept constant, can also be
obtained. For example, in the following plot, the acceleration factor is plotted versus tem-
perature given a constant voltage of 2V.
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T-NT Confidence Bounds

Approximate Confidence Bounds for the T-NT Exponential

Confidence Bounds on the Mean Life

The mean life for the T-NT model is given by setting . The upper and

lower bounds on the mean life (ML estimate of the mean life) are estimated by:
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where is defined by:

If is the confidence level, then for the two-sided bounds, and for the
one-sided bounds. The variance of is given by:

or:

The variances and covariance of and are estimated from the local Fisher matrix (eval-

uated at as follows:

where:

Confidence Bounds on Reliability

The bounds on reliability at a given time, , are estimated by:
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Confidence Bounds on Time

The bounds on time for a given reliability (ML estimate of time) are estimated by first solving
the reliability function with respect to time:

The corresponding confidence bounds are estimated from:

Approximate Confidence Bounds for the T-NT Weibull

Bounds on the Parameters

Using the same approach as previously discussed (     and positive parameters):
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and:

The variances and covariances of and are estimated from the Fisher matrix (eval-

uated at as follows:

where:

Confidence Bounds on Reliability

The reliability function (ML estimate) for the T-NT Weibull model is given by:
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or:

Setting:

or:

The reliability function now becomes:

The next step is to find the upper and lower bounds on  :

where:

PAGE 217



ACCELERATED LIFE TESTING DATA ANALYSIS TEMPERATURE-NONTHERMAL RELATIONSHIP

or:

The upper and lower bounds on reliability are:

Confidence Bounds on Time

The bounds on time (ML estimate of time) for a given reliability are estimated by first solving
the reliability function with respect to time as follows:

or:

where

The upper and lower bounds on are estimated from:
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where:

or:

The upper and lower bounds on time are then found by:

Approximate Confidence Bounds for the T-NT Lognormal

Bounds on the Parameters

Since the standard deviation, , and are positive parameters, and are
treated as normally distributed and the bounds are estimated from:

and:
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The lower and upper bounds on and are estimated from:

and:

The variances and covariances of , and are estimated from the local Fisher matrix

(evaluated at , as follows:

where:
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Bounds on Reliability

The reliability of the lognormal distribution is given by:

Let then For ,

, and for

The above equation then becomes:

The bounds on are estimated from:

where:
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or:

The upper and lower bounds on reliability are:

Confidence Bounds on Time

The bounds around time for a given lognormal percentile (unreliability) are estimated by first
solving the reliability equation with respect to time, as follows:

where:

and:

The next step is to calculate the variance of  :
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or:

The upper and lower bounds are then found by:

Solving for and yields:
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Multivariable Relationships: General
Log-Linear and Proportional Hazards

IN THIS CHAPTER

General Log-Linear Relationship 224
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Proportional Hazards Model 233
Non-Parametric Model Formulation 234
Parametric Model Formulation 235

Indicator Variables 237

So far in this reference the life-stress relationships presented have been either single stress rela-
tionships or two stress relationships. In most practical applications, however, life is a function of
more than one or two variables (stress types). In addition, there are many applications where the
life of a product as a function of stress and of some engineering variable other than stress is
sought. In this chapter, the general log-linear relationship and the proportional hazards model
are presented for the analysis of such cases where more than two accelerated stresses (or vari-
ables) need to be considered.

General Log-Linear Relationship

When a test involves multiple accelerating stresses or requires the inclusion of an engineering
variable, a general multivariable relationship is needed. Such a relationship is the general log-lin-
ear relationship, which describes a life characteristic as a function of a vector of stresses, or

Weibull++ includes this relationship and allows up to eight stresses.
Mathematically the relationship is given by:

where:
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l and are model parameters.

l is a vector of stresses.

This relationship can be further modified through the use of transformations and can be reduced
to the relationships discussed previously, if so desired. As an example, consider a single stress

application of this relationship and an inverse transformation on such that or:

It can be easily seen that the generalized log-linear relationship with a single stress and an
inverse transformation has been reduced to the Arrhenius relationship, where:

or:

Similarly, when one chooses to apply a logarithmic transformation on such that

, the relationship would reduce to the Inverse Power Law relationship. Fur-
thermore, if more than one stress is present, one could choose to apply a different trans-
formation to each stress to create combination relationships similar to the Temperature-
Humidity and the Temperature-Non Thermal. Weibull++ has three built-in transformation
options, namely:

None Exponential LSR

Reciprocal Arrhenius LSR

Logarithmic Power LSR

The power of the relationship and this formulation becomes evident once one realizes that 6,561
unique life-stress relationships are possible (when allowing a maximum of eight stresses). When
combined with the life distributions available in Weibull++, almost 20,000 models can be cre-
ated.
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Using the GLL Model

Like the previous relationships, the general log-linear relationship can be combined with any of
the available life distributions by expressing a life characteristic from that distribution with the
GLL relationship. A brief overview of the GLL-distribution models available in Weibull++ is
presented next.

GLL Exponential

The GLL-exponential model can be derived by setting in the exponential pdf,
yielding the following GLL-exponential pdf:

The total number of unknowns to solve for in this model is (i.e.,

GLL Weibull

The GLL-Weibull model can be derived by setting in Weibull pdf, yielding the fol-
lowing GLL-Weibull pdf:

The total number of unknowns to solve for in this model is (i.e.,

GLL Lognormal

The GLL-lognormal model can be derived by setting in the lognormal pdf, yield-
ing the following GLL-lognormal pdf:

The total number of unknowns to solve for in this model is (i.e.,
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GLL Likelihood Function

The maximum likelihood estimation method can be used to determine the parameters for the
GLL relationship and the selected life distribution. For each distribution, the likelihood function
can be derived, and the parameters of model (the distribution parameters and the GLL para-
meters) can be obtained by maximizing the log-likelihood function. For example, the log-like-
lihood function for the Weibull distribution is given by:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the failure rate parameter (unknown).

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.
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l is the beginning of the interval.

l is the ending of the interval.

GLL Example

Consider the data summarized in the following tables. These data illustrate a typical three-stress
type accelerated test.

Stress Profile Summary

Failure Data
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The data in the second table are analyzed assuming a Weibull distribution, an Arrhenius life-
stress relationship for temperature and an inverse power life-stress relationship for voltage. No
transformation is performed on the operation type. The operation type variable is treated as an
indicator variable that takes a discrete value of 0 for an on/off operation and 1 for a continuous
operation. The following figure shows the stress types and their transformations in Weibull++.

The GLL relationship then becomes:

The resulting relationship after performing these transformations is:

Therefore, the parameter of the Arrhenius relationship is equal to the log-linear coefficient
, and the parameter of the inverse power relationship is equal to ( ). Therefore can

also be written as:

The activation energy of the Arrhenius relationship can be calculated by multiplying B with
Boltzmann's constant.

The best fit values for the parameters in this case are:
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Once the parameters are estimated, further analysis on the data can be performed. First, using
Weibull++, a Weibull probability plot of the data can be obtained, as shown next.

Several types of information about the model as well as the data can be obtained from a prob-
ability plot. For example, the choice of an underlying distribution and the assumption of a com-
mon slope (shape parameter) can be examined. In this example, the linearity of the data
supports the use of the Weibull distribution. In addition, the data appear parallel on this plot,
therefore reinforcing the assumption of a common beta. Further statistical analysis can and
should be performed for these purposes as well.

The Life vs. Stress plot is a very common plot for the analysis of accelerated data. Life vs.
Stress plots can be very useful in assessing the effect of each stress on a product's failure. In this
case, since the life is a function of three stresses, three different plots can be created. Such plots
are created by holding two of the stresses constant at the desired use level, and varying the
remaining one. The use stress levels for this example are 328K for temperature and 10V for
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voltage. For the operation type, a decision has to be made by the engineers as to whether they
implement an on/off or continuous operation. The next two figures display the effects of tem-
perature and voltage on the life of the product.
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The effects of the two different operation types on life can be observed in the next figure. It can
be seen that the on/off cycling has a greater effect on the life of the product in terms of accel-
erating failure than the continuous operation. In other words, a higher reliability can be achieved
by running the product continuously.
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Proportional Hazards Model

Introduced by D. R. Cox, the Proportional Hazards (PH) model was developed in order to estim-
ate the effects of different covariates influencing the times-to-failure of a system. The model has
been widely used in the biomedical field, as discussed in Leemis [22], and recently there has
been an increasing interest in its application in reliability engineering. In its original form, the
model is non-parametric, (i.e., no assumptions are made about the nature or shape of the under-
lying failure distribution). In this reference, the original non-parametric formulation as well as a
parametric form of the model will be considered utilizing a Weibull life distribution. In
Weibull++, the proportional hazards model is included in its parametric form and can be used to
analyze data with up to eight variables. The GLL-Weibull and GLL-exponential models are actu-
ally special cases of the proportional hazards model. However, when using the proportional haz-
ards in Weibull++, no transformation on the covariates (or stresses) can be performed.
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Non-Parametric Model Formulation

According to the PH model, the failure rate of a system is affected not only by its operation
time, but also by the covariates under which it operates. For example, a unit may have been
tested under a combination of different accelerated stresses such as humidity, temperature,
voltage, etc. It is clear then that such factors affect the failure rate of a unit.

The instantaneous failure rate (or hazard rate) of a unit is given by:

where:

l is the probability density function.

l is the reliability function.

Note that for the case of the failure rate of a unit being dependent not only on time but also on
other covariates, the above equation must be modified in order to be a function of time and of
the covariates. The proportional hazards model assumes that the failure rate (hazard rate) of a
unit is the product of:

l an arbitrary and unspecified baseline failure rate, which is a function of time only.

l a positive function , independent of time, which incorporates the effects of a num-
ber of covariates such as humidity, temperature, pressure, voltage, etc.

The failure rate of a unit is then given by:

where:

l is a row vector consisting of the covariates:

l is a column vector consisting of the unknown parameters (also called regression para-
meters) of the model:
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where:

= number of stress related variates (time-independent).

It can be assumed that the form of is known and is unspecified. Different

forms of can be used.

However, the exponential form is mostly used due to its simplicity and is given by:

The failure rate can then be written as:

Parametric Model Formulation

A parametric form of the proportional hazards model can be obtained by assuming an under-
lying distribution. In Weibull++, the Weibull and exponential distributions are available. In this
section we will consider the Weibull distribution to formulate the parametric proportional haz-
ards model. In other words, it is assumed that the baseline failure rate is parametric and given
by the Weibull distribution. In this case, the baseline failure rate is given by:

The PH failure rate then becomes:

It is often more convenient to define an additional covariate, , in order to allow the
Weibull scale parameter raised to the beta (shape parameter) to be included in the vector of
regression coefficients. The PH failure rate can then be written as:

The PH reliability function is given by:
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The pdf can be obtained by taking the partial derivative of the reliability function with respect to
time. The PH pdf is:

The total number of unknowns to solve for in this model is (i.e., ).

The maximum likelihood estimation method can be used to determine these parameters. The
log-likelihood function for this case is given by:

where:

Solving for the parameters that maximize the log-likelihood function will yield the parameters
for the PH-Weibull model. Note that for , the log-likelihood function becomes the log-
likelihood function for the PH-exponential model, which is similar to the original form of the
proportional hazards model proposed by Cox and Oakes [39].

Note that the likelihood function of the GLL model is very similar to the likelihood function for
the proportional hazards-Weibull model. In particular, the shape parameter of the Weibull dis-
tribution can be included in the regression coefficients as follows:

where:

l are the parameters of the PH model.

l are the parameters of the general log-linear model.

In this case, the likelihood functions are identical. Therefore, if no transformation on the cov-
ariates is performed, the parameter values that maximize the likelihood function of the GLL
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model also maximize the likelihood function for the proportional hazards-Weibull (PHW)
model. Note that for (exponential life distribution), the two likelihood functions are
identical, and

Indicator Variables

Another advantage of the multivariable relationships included in Weibull++ is that they allow
for simultaneous analysis of continuous and categorical variables. Categorical variables are vari-
ables that take on discrete values such as the lot designation for products from different man-
ufacturing lots. In this example, lot is a categorical variable, and it can be expressed in terms of
indicator variables. Indicator variables only take a value of 1 or 0. For example, consider a
sample of test units. A number of these units were obtained from Lot 1, others from Lot 2, and
the rest from Lot 3. These three lots can be represented with the use of indicator variables, as
follows:

l Define two indicator variables, and

l For the units from Lot 1, and

l For the units from Lot 2, and

l For the units from Lot 3, and

Assume that an accelerated test was performed with these units, and temperature was the accel-
erated stress. In this case, the GLL relationship can be used to analyze the data. From the GLL
relationship we get:

where:

l and are the indicator variables, as defined above.

l where is the temperature.
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The data can now be entered in Weibull++ and, with the assumption of an underlying life dis-
tribution and using MLE, the parameters of this model can be obtained.
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Time-Varying Stress Models
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Traditionally, accelerated tests that use a time-varying stress application have been used to
assure failures quickly. This is highly desirable given the pressure on industry today to shorten
new product introduction time. The most basic type of time-varying stress test is a step-stress
test. In step-stress accelerated testing, the test units are subjected to successively higher stress
levels in predetermined stages, and thus follow a time-varying stress profile. The units usually
start at a lower stress level and at a predetermined time, or failure number, the stress is
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increased and the test continues. The test is terminated when all units have failed, when a cer-
tain number of failures are observed or when a certain time has elapsed. Step-stress testing can
substantially shorten the reliability test's duration. In addition to step-stress testing, there are
many other types of time-varying stress profiles that can be used in accelerated life testing.
However, it should be noted that there is more uncertainty in the results from such time-varying
stress tests than from traditional constant stress tests of the same length and sample size.

When dealing with data from accelerated tests with time-varying stresses, the life-stress rela-
tionship must take into account the cumulative effect of the applied stresses. Such a model is
commonly referred to as a cumulative damage or cumulative exposure model. Nelson [28]
defines and presents the derivation and assumptions of such a model. Weibull++ includes the
cumulative damage model for the analysis of time-varying stress data. This section presents an
introduction to the model formulation and its application.

Model Formulation

To formulate the cumulative exposure/damage model, consider a simple step-stress experiment
where an electronic component was subjected to a voltage stress, starting at 2V (use stress level)
and increased to 7V in stepwise increments, as shown in the next figure. The following steps, in
hours, were used to apply stress to the products under test: 0 to 250, 2V; 250 to 350, 3V; 350 to
370, 4V; 370 to 380, 5V; 380 to 390, 6V; and 390 to 400, 7V.
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In this example, 11 units were available for the test. All units were tested using this same stress
profile. Units that failed were removed from the test and their total times on test were recorded.
The following times-to-failure were observed in the test, in hours: 280, 310, 330, 352, 360, 366,
371, 374, 378, 381 and 385. The first failure in this test occurred at 280 hours when the stress
was 3V. During the test, this unit experienced a period of time at 2V before failing at 3V. If the
stress were 2V, one would expect the unit to fail at a time later than 280 hours, while if the unit
were always at 3V, one would expect that failure time to be sooner than 280 hrs. The problem
faced by the analyst in this case is to determine some equivalency between the stresses. In other
words, what is the equivalent of 280 hours (with 250 hours spent at 2V and 30 hours spent at
3V) at a constant 2V stress or at a constant 3V stress?

Mathematical Formulation for a Step-Stress Model

To mathematically formulate the model, consider the step-stress test shown in the next figure,
with stresses S1, S2 and S3. Furthermore, assume that the underlying life distribution is the
Weibull distribution, and also assume an inverse power law relationship between the Weibull
scale parameter and the applied stress.

PAGE 241



ACCELERATED LIFE TESTING DATA ANALYSIS TIME-VARYING STRESS MODELS

From the inverse power law relationship, the scale parameter, , of the Weibull distribution can
be expressed as an inverse power function of the stress, or:

where and are model parameters. The fraction of the units failing by time under a con-
stant stress , is given by:

where:

The cdf for each constant stress level is:
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The above equations would suffice if the units did not experience different stresses during the
test, as they did in this case. To analyze the data from this step-stress test, a cumulative expos-
ure model is needed. Such a model will relate the life distribution, in this case the Weibull dis-
tribution, of the units at one stress level to the distribution at the next stress level. In formulating
this model, it is assumed that the remaining life of the test units depends only on the cumulative
exposure the units have seen and that the units do not remember how such exposure was accu-
mulated. Moreover, since the units are held at a constant stress at each step, the surviving units
will fail according to the distribution at the current step, but with a starting age corresponding to
the total accumulated time up to the beginning of the current step. This model can be formulated
as follows:

l Units failing during the first step have not experienced any other stresses and will fail
according to the cdf. Units that made it to the second step will fail according to the
cdf, but will have accumulated some equivalent age, at this stress level (given the fact

that they have spent hours at or:

In other words, the probability that the units will fail at a time, , while at and between

and is equivalent to the probability that the units would fail after accumulating
plus some equivalent time, to account for the exposure the units have seen at .

l The equivalent time, will be the time by which the probability of failure at is equal
to the probability of failure at after an exposure of or:

l One would repeat this for step 3 taking into account the accumulated exposure during steps
1 and 2, or in more general terms and for the step:
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where:

l Once the cdf for each step has been obtained, the pdf can also then be determined utilizing:

Once the model has been formulated, model parameters (i.e., , and ) can be computed
utilizing maximum likelihood estimation methods.

The previous example can be expanded for any time-varying stress. Weibull++ allows you to
define any stress profile. For example, the stress can be a ramp stress, a monotonically increas-
ing stress, sinusoidal, etc. This section presents a generalized formulation of the cumulative dam-
age model, where stress can be any function of time.

Confidence Intervals

Using the same methodology as in previous sections, approximate confidence intervals can be
derived and applied to all results of interest using the Fisher Matrix approach discussed in
Appendix A. Weibull++ utilizes such intervals on all results.

Notes on Trigonometric Functions

Trigonometric functions sometime are used in accelerated life tests. However Weibull++ does
not include them. In fact, a trigonometric function can be defined by its frequency and mag-
nitude. Frequency and magnitude then can be treated as two constant stresses. The GLL model
discussed in General Log-Linear Relationship then can be applied for modeling.

Cumulative Damage Power Relationship

This section presents a generalized formulation of the cumulative damage model where stress
can be any function of time and the life-stress relationship is based on the power relationship.
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and assuming the power law relationship, the life-stress relationship is given by:

In Weibull++, the above relationship is actually presented in a format consistent with the gen-
eral log-linear (GLL) relationship for the power law relationship:

Therefore, instead of displaying and as the calculated parameters, the following repara-
meterization is used:

Cumulative Damage Power - Exponential

Given a time-varying stress and assuming the power law relationship, the mean life is
given by:

The reliability function of the unit under a single stress is given by:

where:

Therefore, the pdf is:

Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the
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parameters are determined, all other characteristics of interest (e.g., mean life, failure rate, etc.)
can be obtained utilizing the statistical properties definitions presented in previous chapters. The
log-likelihood equation is as follows:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

Cumulative Damage Power - Weibull

Given a time-varying stress and assuming the power law relationship, the characteristic
life is given by:
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The reliability function of the unit under a single stress is given by:

where:

Therefore, the pdf is:

Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the para-
meters are determined, all other characteristics of interest can be obtained utilizing the statistical
properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-
likelihood equation is as follows:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.
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l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

Cumulative Damage-Power-Weibull Example

Using the simple step-stress data given here, one would define as:

Assuming a power relation as the underlying life-stress relationship and the Weibull distribution
as the underlying life distribution, one can then formulate the log-likelihood function for the
above data set as,

where:

l is the number of exact time-to-failure data points.

l is the Weibull shape parameter.

PAGE 248



ACCELERATED LIFE TESTING DATA ANALYSIS TIME-VARYING STRESS MODELS

l and are the IPL parameters.

l is the stress profile function.

l is the time to failure.

The parameter estimates for , and can be obtained by simultaneously solving,

and . Using Weibull++, the parameter estimates for this data set are:

Once the parameters are obtained, one can now determine the reliability for these units at any

time and stress from:

or at a fixed stress level and ,

The mean time to failure at any stress can be determined by:

or at a fixed stress level ,

Any other metric of interest (e.g., failure rate, conditional reliability etc.) can also be determined
using the basic definitions given in Appendix A and calculated automatically with Weibull++.
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Cumulative Damage Power - Lognormal

Given a time-varying stress and assuming the power law relationship, the median life is
given by:

The reliability function of the unit under a single stress is given by:

where:

and:

Therefore, the pdf is:

Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the para-
meters are determined, all other characteristics of interest can be obtained utilizing the statistical
properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-
likelihood equation is as follows:

where:

PAGE 250



ACCELERATED LIFE TESTING DATA ANALYSIS TIME-VARYING STRESS MODELS

and:

l is the number of groups of exact time-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

Cumulative Damage Arrhenius Relationship

This section presents a generalized formulation of the cumulative damage model where stress
can be any function of time and the life-stress relationship is based on the Arrhenius life-stress

relationship. Given a time-varying stress and assuming the Arrhenius relationship, the
life-stress relationship is given by:

In Weibull++, the above relationship is actually presented in a format consistent with the gen-
eral log-linear (GLL) relationship for the Arrhenius relationship:
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Therefore, instead of displaying and as the calculated parameters, the following repara-
meterization is used:

Cumulative Damage Arrhenius - Exponential

Given a time-varying stress and assuming the Arrhenius relationship, the mean life is:

The reliability function of the unit under a single stress is given by:

where:

Therefore, the pdf is:

Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the para-
meters are determined, all other characteristics of interest can be obtained utilizing the statistical
properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-
likelihood equation is as follows:
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where:

and:

l is the number of groups of exact time-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

Cumulative Damage Arrhenius - Weibull

Given a time-varying stress and assuming the Arrhenius relationship, the characteristic
life is given by:

The reliability function of the unit under a single stress is given by:

where:

PAGE 253



ACCELERATED LIFE TESTING DATA ANALYSIS TIME-VARYING STRESS MODELS

Therefore, the pdf is:

Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the para-
meters are determined, all other characteristics of interest can be obtained utilizing the statistical
properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-
likelihood equation is as follows:

where:

and:

l is the number of groups of exact time-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.
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l is the beginning of the interval.

l is the ending of the interval.

Cumulative Damage Arrhenius - Lognormal

Given a time-varying stress and assuming the Arrhenius relationship, the median life is
given by:

The reliability function of the unit under a single stress is given by:

where:

and:

Therefore, the pdf is:

Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the para-
meters are determined, all other characteristics of interest can be obtained utilizing the statistical
properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-
likelihood equation is as follows,
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where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

Cumulative Damage Exponential Relationship

This section presents a generalized formulation of the cumulative damage model where stress
can be any function of time and the life-stress relationship is based on the exponential rela-

tionship. Given a time-varying stress and assuming the exponential relationship, the life-
stress relationship is given by:
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In Weibull++, the above relationship is actually presented in a format consistent with the gen-
eral log-linear (GLL) relationship for the exponential relationship:

Therefore, instead of displaying and as the calculated parameters, the following repara-
meterization is used:

Cumulative Damage Exponential - Exponential

Given a time-varying stress and assuming the exponential life-stress relationship, the
mean life is given by:

The reliability function of the unit under a single stress is given by:

where:

Therefore, the pdf is:

Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the para-
meters are determined, all other characteristics of interest can be obtained utilizing the statistical
properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-
likelihood equation is as follows:
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where:

and:

l is the number of groups of exact time-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

Cumulative Damage Exponential - Weibull

Given a time-varying stress and assuming the exponential life-stress relationship, the char-
acteristic life is given by:

The reliability function of the unit under a single stress is given by:
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where:

Therefore, the pdf is:

Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the para-
meters are determined, all other characteristics of interest can be obtained utilizing the statistical
properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-
likelihood equation is as follows:

where:

and:

l is the number of groups of exact time-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

PAGE 259



ACCELERATED LIFE TESTING DATA ANALYSIS TIME-VARYING STRESS MODELS

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

Cumulative Damage Exponential - Lognormal

Given a time-varying stress and assuming the exponential life-stress relationship, the
median life is:

The reliability function of the unit under a single stress is given by:

where:

and:

Therefore, the pdf is:

Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the para-
meters are determined, all other characteristics of interest can be obtained utilizing the statistical
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properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-
likelihood equation is as follows:

where:

and:

l is the number of groups of exact times-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

Cumulative Damage General Loglinear Relationship

This section presents a generalized formulation of the cumulative damage model where multiple
stress types are used in the analysis and where the stresses can be any function of time.
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Cumulative Damage General Log-Linear - Exponential

Given time-varying stresses , the life-stress relationship
is:

where and are model parameters. This relationship can be further modified through the
use of transformations and can be reduced to the relationships discussed previously (power,
Arrhenius and exponential), if so desired. The exponential reliability function of the unit under
multiple stresses is given by:

where:

Therefore, the pdf is:

Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the para-
meters are determined, all other characteristics of interest can be obtained utilizing the statistical
properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-
likelihood equation is as follows:

where:

and:
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l is the number of groups of exact time-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.

Cumulative Damage General Log-Linear - Weibull

Given time-varying stresses , the life-stress relationship is
given by:

where are model parameters.

The Weibull reliability function of the unit under multiple stresses is given by:

where:

Therefore, the pdf is:
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Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the para-
meters are determined, all other characteristics of interest can be obtained utilizing the statistical
properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-
likelihood equation is as follows:

where:

and:

l is the number of groups of exact time-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.
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Cumulative Damage General Log-Linear - Lognormal

Given time-varying stresses , the life-stress relationship is
given by:

where are model parameters.

The lognormal reliability function of the unit under multiple stresses is given by:

where:

and:

Therefore, the pdf is:

Parameter estimation can be accomplished via maximum likelihood estimation methods, and
confidence intervals can be approximated using the Fisher matrix approach. Once the para-
meters are determined, all other characteristics of interest can be obtained utilizing the statistical
properties definitions (e.g., mean life, failure rate, etc.) presented in previous chapters. The log-
likelihood equation is as follows:

where:
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and:

l is the number of groups of exact time-to-failure data points.

l is the number of times-to-failure in the time-to-failure data group.

l is the exact failure time of the group.

l is the number of groups of suspension data points.

l is the number of suspensions in the group of suspension data points.

l is the running time of the suspension data group.

l is the number of interval data groups.

l is the number of intervals in the group of data intervals.

l is the beginning of the interval.

l is the ending of the interval.
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Additional Tools

Common Shape Parameter Likelihood Ratio Test

In order to assess the assumption of a common shape parameter among the data obtained at vari-
ous stress levels, the likelihood ratio (LR) test can be utilized, as described in Nelson [28]. This
test applies to any distribution with a shape parameter. In the case of Weibull++, it applies to
the Weibull and lognormal distributions. When Weibull is used as the underlying life dis-
tribution, the shape parameter, is assumed to be constant across the different stress levels
(i.e., stress independent). Similarly, , the parameter of the lognormal distribution is assumed
to be constant across the different stress levels.

The likelihood ratio test is performed by first obtaining the LR test statistic, . If the true shape
parameters are equal, then the distribution of is approximately chi-square with
degrees of freedom, where is the number of test stress levels with two or more exact failure
points. The LR test statistic, , is calculated as follows:
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where are the likelihood values obtained by fitting a separate distribution to the
data from each of the test stress levels (with two or more exact failure times). The likelihood

value, is obtained by fitting a model with a common shape parameter and a separate scale
parameter for each of the stress levels, using indicator variables.

Once the LR statistic has been calculated, then:

l If the shape parameter estimates do not differ statistically sig-
nificantly at the 100 level.

l If the shape parameter estimates differ statistically sig-
nificantly at the 100 level.

is the 100(1- percentile of the chi-square distribution with
degrees of freedom.

Example: Likelihood Ratio Test Example

Consider the following times-to-failure data at three different stress levels.

Stress 406 K 416 K 426 K

Time Failed (hrs) 248 164 92

456 176 105

528 289 155

731 319 184

813 340 219

543 235

The data set was analyzed using an Arrhenius-Weibull model. The analysis yields:
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The assumption of a common across the different stress levels can be visually assessed by
using a probability plot. As you can see in the following plot, the plotted data from the different
stress levels seem to be fairly parallel.

A better assessment can be made with the LR test, which can be performed using the Likelihood
Ratio Test tool in Weibull++. For example, in the following figure, the are compared for
equality at the 10% level.
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The LR test statistic, , is calculated to be 0.481. Therefore,

the s do not differ significantly at the 10% level.
The individual likelihood values for each of the test stresses are shown next.
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Tests of Comparison

It is often desirable to be able to compare two sets of accelerated life data in order to determine
which of the data sets has a more favorable life distribution. The units from which the data are
obtained could either be from two alternate designs, alternate manufacturers or alternate lots or
assembly lines. Many methods are available in statistical literature for doing this when the units
come from a complete sample, (i.e., a sample with no censoring). This process becomes a little
more difficult when dealing with data sets that have censoring, or when trying to compare two
data sets that have different distributions. In general, the problem boils down to that of being
able to determine any statistically significant difference between the two samples of potentially
censored data from two possibly different populations. This section discusses some of the meth-
ods that are applicable to censored data, and are available in Weibull++.

Simple Plotting

One popular graphical method for making this determination involves plotting the data at a
given stress level with confidence bounds and seeing whether the bounds overlap or separate at
the point of interest. This can be effective for comparisons at a given point in time or a given
reliability level, but it is difficult to assess the overall behavior of the two distributions, as the
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confidence bounds may overlap at some points and be far apart at others. This can be easily
done using the overlay plot feature in Weibull++.

Using the Life Comparison Wizard

Another methodology, suggested by Gerald G. Brown and Herbert C. Rutemiller, is to estimate
the probability of whether the times-to-failure of one population are better or worse than the
times-to-failure of the second. The equation used to estimate this probability is given by:

where is the pdf of the first distribution and is the reliability function of the
second distribution. The evaluation of the superior data set is based on whether this probability
is smaller or greater than 0.50. If the probability is equal to 0.50, then is equivalent to saying
that the two distributions are identical.

For example, consider two alternate designs, where X and Y represent the life test data from
each design. If we simply wanted to choose the component with the higher reliability, we could
simply select the component with the higher reliability at time . However, if we wanted to
design the product to be as long-lived as possible, we would want to calculate the probability
that the entire distribution of one design is better than the other. The statement "the probability
that X is greater than or equal to Y" can be interpreted as follows:

l If , then the statement is equivalent to saying that both X and Y are equal.

l If or, for example, , then the statement is equivalent to saying that
, or Y is better than X with a 90% probability.

Weibull++'s Comparison Wizard allows you to perform such calculations. The comparison is
performed at the given use stress levels of each data set, using the equation:

Degradation Analysis

Given that products are frequently being designed with higher reliabilities and developed in
shorter amounts of time, even accelerated life testing is often not sufficient to yield reliability
results in the desired timeframe. In some cases, it is possible to infer the reliability behavior of
unfailed test samples with only the accumulated test time information and assumptions about
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the distribution. However, this generally leads to a great deal of uncertainty in the results.
Another option in this situation is the use of degradation analysis. Degradation analysis involves
the measurement and extrapolation of degradation or performance data that can be directly
related to the presumed failure of the product in question. Many failure mechanisms can be dir-
ectly linked to the degradation of part of the product, and degradation analysis allows the user to
extrapolate to an assumed failure time based on the measurements of degradation or per-
formance over time. To reduce testing time even further, tests can be performed at elevated
stresses and the degradation at these elevated stresses can be measured resulting in a type of ana-
lysis known as accelerated degradation. In some cases, it is possible to directly measure the
degradation over time, as with the wear of brake pads or with the propagation of crack size. In
other cases, direct measurement of degradation might not be possible without invasive or
destructive measurement techniques that would directly affect the subsequent performance of
the product. In such cases, the degradation of the product can be estimated through the meas-
urement of certain performance characteristics, such as using resistance to gauge the degrad-
ation of a dielectric material. In either case, however, it is necessary to be able to define a level
of degradation or performance at which a failure is said to have occurred. With this failure level
of performance defined, it is a relatively simple matter to use basic mathematical models to
extrapolate the performance measurements over time to the point where the failure is said to
occur. This is done at different stress levels, and therefore each time-to-failure is also associated
with a corresponding stress level. Once the times-to-failure at the corresponding stress levels
have been determined, it is merely a matter of analyzing the extrapolated failure times in the
same manner as you would conventional accelerated time-to-failure data.

Once the level of failure (or the degradation level that would constitute a failure) is defined, the
degradation for multiple units over time needs to be measured (with different groups of units
being at different stress levels). As with conventional accelerated data, the amount of certainty
in the results is directly related to the number of units being tested, the number of units at each
stress level, as well as in the amount of overstressing with respect to the normal operating con-
ditions. The performance or degradation of these units needs to be measured over time, either
continuously or at predetermined intervals. Once this information has been recorded, the next
task is to extrapolate the performance measurements to the defined failure level in order to
estimate the failure time. Weibull++ allows the user to perform such analysis using a linear,
exponential, power, logarithmic, Gompertz or Lloyd-Lipow model to perform this extrapolation.
These models have the following forms:
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where represents the performance, represents time, and and are model parameters to
be solved for. Once the model parameters and (and for Lloyd-Lipow) are estimated
for each sample , a time, can be extrapolated that corresponds to the defined level of fail-
ure . The computed can now be used as our times-to-failure for subsequent accelerated life
data analysis. As with any sort of extrapolation, one must be careful not to extrapolate too far
beyond the actual range of data in order to avoid large inaccuracies (modeling errors).

One may also define a censoring time past which no failure times are extrapolated. In practice,
there is usually a rather narrow band in which this censoring time has any practical meaning.
With a relatively low censoring time, no failure times will be extrapolated, which defeats the
purpose of degradation analysis. A relatively high censoring time would occur after all of the
theoretical failure times, thus being rendered meaningless. Nevertheless, certain situations may
arise in which it is beneficial to be able to censor the accelerated degradation data.

Accelerated Life Test Plans

Poor accelerated test plans waste time, effort and money and may not even yield the desired
information. Before starting an accelerated test (which is sometimes an expensive and difficult
endeavor), it is advisable to have a plan that helps in accurately estimating reliability at oper-
ating conditions while minimizing test time and costs. A test plan should be used to decide on
the appropriate stress levels that should be used (for each stress type) and the amount of the test
units that need to be allocated to the different stress levels (for each combination of the different
stress types' levels). This section presents some common test plans for one-stress and two-stress
accelerated tests.

General Assumptions

Most accelerated life testing plans use the following model and testing assumptions that cor-
respond to many practical quantitative accelerated life testing problems.

1. The log-time-to-failure for each unit follows a location-scale distribution such that:
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where and are the location and scale parameters respectively and (      ) is the
standard form of the location-scale distribution.

2. Failure times for all test units, at all stress levels, are statistically independent.

3. The location parameter is a linear function of stress. Specifically, it is assumed that:

4. The scale parameter, does not depend on the stress levels. All units are tested until a pre-
specified test time.

5. Two of the most common models used in quantitative accelerated life testing are the linear
Weibull and lognormal models. The Weibull model is given by:

where denotes the smallest extreme value distribution. The lognormal model is
given by:

That is, log life is assumed to have either an or a normal distribution with loc-

ation parameter , expressed as a linear function of and constant scale parameter
.

Planning Criteria and Problem Formulation

Without loss of generality, a stress can be standardized as follows:

where:

l is the use stress or design stress at which product life is of primary interest.

l is the highest test stress level.
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The values of , and refer to the actual values of stress or to the transformed values in
case a transformation (e.g., the reciprocal transformation to obtain the Arrhenius relationship or
the log transformation to obtain the power relationship) is used.

Typically, there will be a limit on the highest level of stress for testing because the distribution
and life-stress relationship assumptions hold only for a limited range of the stress. The highest
test level of stress, can be determined based on engineering knowledge, preliminary tests
or experience with similar products. Higher stresses will help end the test faster, but might viol-
ate your distribution and life-stress relationship assumptions.

Therefore, at the design stress and at the highest test stress.

A common purpose of an accelerated life test experiment is to estimate a particular percentile

(unreliability value of ), , in the lower tail of the failure distribution at use stress. Thus a

natural criterion is to minimize or such that .
measures the precision of the quantile estimator; smaller values mean less variation in the

value of in repeated samplings. Hence a good test plan should yield a relatively small, if

not the minimum, value. For the minimization problem, the decision variables are

(the standardized stress level used in the test) and (the percentage of the total test units
allocated at that level). The optimization problem can be formulized as follows.

Minimize:

Subject to:

where:

An optimum accelerated test plan requires algorithms to minimize .

Planning tests may involve compromise between efficiency and extrapolation. More failures cor-
respond to better estimation efficiency, requiring higher stress levels but more extrapolation to
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the use condition. Choosing the best plan to consider must take into account the trade-offs
between efficiency and extrapolation. Test plans with more stress levels are more robust than
plans with fewer stress levels because they rely less on the validity of the life-stress relationship
assumption. However, test plans with fewer stress levels can be more convenient.

Test Plans for a Single Stress Type

This section presents a discussion of some of the most popular test plans used when only one
stress factor is applied in the test. In order to design a test, the following information needs to
be determined beforehand:

1. The design stress, and the highest test stress, .

2. The test duration (or censoring time), .

3. The probability of failure at by , denoted as and at by
, denoted as .

Two Level Statistically Optimum Plan

The Two Level Statistically Optimum Plan is the most important plan, as almost all other plans
are derived from it. For this plan, the highest stress, , and the design stress, , are pre-
determined. The test is conducted at two levels. The high test level is fixed at . The low test
stress, , together with the proportion of the test units allocated to the low level, , are cal-

culated such that is minimized. Meeker and Hahn [36] present more details about
this test plan.

Three Level Best Standard Plan

In this plan, three stress levels are used. Let us use and to denote the three stand-
ardized stress levels from lowest to highest with:

An equal number of units is tested at each level, . Therefore, the test

plan is , , with being the
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only decision variable. is determined such that is minimized. Escobar and
Meeker [37] present more details about this test plan.

Three Level Best Compromise Plan

In this plan, three stress levels are used , , which is a value between 0 and 1,
is pre-determined. and are commonly used; values less than or equal to

0.2 can give good results. The test plan is , = ,

with and being the decision variables determined such

that is minimized. Meeker [38] presents more details about this test plan.

Three Level Best Equal Expected Number Failing Plan

In this plan, three stress levels are used , and there is a constraint that an equal
number of failures at each stress level is expected. The constraint can be written as:

where , and are the failure probability at the low, middle and high test level,

respectively. and can be expressed in terms of and . Therefore, all variables

can be expressed in terms of which is chosen such that is minimized. Meeker
[38] presents more details about this test plan.

Three Level 4:2:1 Allocation Plan

In this plan, three stress levels are used , The allocation of units at each level is

pre-given as . Therefore and

. is the only decision variable that is chosen such that is minimized.

The optimum can also be multiplied by a constant (defined by the user) to make the low
stress level closer to the use stress than to the optimized plan, in order to make a better extra-
polation at the use stress. Meeker and Hahn [40] present more details about this test plan.

PAGE 278



ACCELERATED LIFE TESTING DATA ANALYSIS ADDITIONAL TOOLS

Example of a Single Stress Test Plan

A reliability engineer is planning an accelerated test for a mechanical component. Torque is the
only factor in the test. The purpose of the experiment is to estimate the B10 life (time equivalent
to unreliability = 0.1) of the diodes. The reliability engineer wants to use a 2 Level Statistically
Optimum Plan because it would require fewer test chambers than a 3 level test plan. 40 units are
available for the test. The mechanical component is assumed to follow a Weibull distribution
with beta = 3.5, and a power model is assumed for the life-stress relationship. The test is
planned to last for 10,000 cycles. The engineer has estimated that there is a 0.06% probability
that a unit will fail by 10,000 cycles at the use stress level of 60 N • m. The highest level
allowed in the test is 120 N • m and a unit is estimated to fail with a probability of 99.999% at
120 N • m. The following setup shows the test plan in Weibull++.

The Two Level Statistically Optimum Plan is shown next.
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The Two Level Statistically Optimum Plan is to test 28.24 units at 95.39 N • m and 11.76 units
at 120 N • m. The variance of the test at B10 is

.

Test Plan Evaluation

In addition to assessing , the test plan can also be evaluated based on three different
criteria: confidence level, bounds ratio or sample size. These criteria can be assessed before con-
ducting the recommended test to decide whether the test plan is satisfactory or whether some
modifications would be beneficial. We can solve for any one of three criteria, given the two
other criteria.

The bounds ratio is defined as follows:

This ratio is analogous to the ratio that can be calculated if a test is conducted and life data are
obtained and used to calculate the ratio of the confidence bounds based on the results.

For this example, assume that a 90% confidence is desired and 40 units are to be used in the
test. The bounds ratio is calculated as 2.946345, as shown next.
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If this calculated bounds ratio is unsatisfactory, we can calculate the required number of units
that would meet a certain bounds ratio criterion. For example, if a bounds ratio of 2 is desired,
the required sample size is calculated as 97.210033, as shown next.

If the sample size is kept at 40 units and a bounds ratio of 2 is desired, the equivalent con-
fidence level we have in the test drops to 70.8629%, as shown next.
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Test Plans for Two Stress Types

This section presents a discussion of some of the most popular test plans used when two stress
factors are applied in the test and interactions are assumed not to exists between the factors. The
location parameter can be expressed as function of stresses and or as a function of
their normalized stress levels as follows:

In order to design a test, the following information needs to be determined beforehand:

1. The stress limits (the design stress, and the highest test stress, ) of each stress type.

2. The test time (or censoring time), . .

3. The probability of failure at at three stress combinations. Usually , and
are used ( indicates probability and the subscript represents the design stress, while
represents the highest stress level in the test).

For two-stress test planning, two methods are available: the Three Level Optimum Plan and the
Five Level Best Compromise Plan.

Three Level Optimum Plan

The Three Level Optimum Plan is obtained by first finding a one-stress degenerate Two Level
Statistically Optimum Plan and splitting this degenerate plan into an appropriate two-stress plan.
In a degenerate test plan, the test is conducted at any two (or more) stress level combinations on

a line with slope that passes through the design . Therefore, in the case of
a degenerate design, we have:

Degenerate plans help reducing the two-stress problem into a one-stress problem. Although
these degenerate plans do not allow the estimation of all the model parameters and would be an
unlikely choice in practice, they are used as a starting point for developing more reasonable
optimum and compromise test plans. After finding the one stress degenerate Two Level Stat-
istically Optimum Plan using the methodology explained in 13.4.3.1, the plan is split into an
appropriate Three Level Optimum Plan.

The next figure illustrates the concept of the Three Level Optimum Plan for a two-stress test.
is the (0,0) point. and are the one-stress degenerate Two Level Statistically
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Optimum Plan. , which corresponds to (     ), is always used for this type of
test and is the high stress level of the degenerate plan. corresponds to the low stress level
of the degenerate plan. A line, , is drawn passing through such that all the points along
the line have the same probability of failures at the end of the test with the stress levels of the

plan. and are then determined by obtaining the intersections of with the bound-
aries of the square.

, and represent the the Three Level Optimum Plan. Readers are encouraged to
review Escobar and Meeker [37] for more details about this test plan.

Five Level Best Compromise Plan

The Five Level Best Compromise Plan is obtained by first finding a degenerate one-stress Three
Level Best Compromise Plan, using the methodology explained in the Three Level Best Com-
promise Plan (with ) , and splitting this degenerate plan into an appropriate two-
stress plan.

In the next figure, is the (0,0) point. and are the degenerate one-stress
Three Level Best Compromise Plan. Points along the line have the same probability of fail-
ure at the end of the test plan, while points on have the same probability of failure at

the end of the test plan. , and are then determined by obtaining the inter-
sections of and with the boundaries of the square.
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, , and represent the the Five Level Best Compromise Plan. Readers are
encouraged to review Escobar and Meeker [37] for more details about this test plan.
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Appendix A: Brief Statistical Background

In this appendix, we attempt to provide a brief elementary introduction to the most common and
fundamental statistical equations and definitions used in reliability engineering and life data ana-
lysis. The equations and concepts presented in this appendix are used extensively throughout
this reference.

Random Variables

In general, most problems in reliability engineering deal with quantitative measures, such as the
time-to-failure of a component, or qualitative measures, such as whether a component is defect-
ive or non-defective. We can then use a random variable to denote these possible measures.

In the case of times-to-failure, our random variable is the time-to-failure of the component
and can take on an infinite number of possible values in a range from 0 to infinity (since we do
not know the exact time a priori). Our component can be found failed at any time after time 0
(e.g., at 12 hours or at 100 hours and so forth), thus can take on any value in this range. In
this case, our random variable is said to be a continuous random variable. In this reference,
we will deal almost exclusively with continuous random variables.

In judging a component to be defective or non-defective, only two outcomes are possible. That
is, is a random variable that can take on one of only two values (let's say defective = 0 and
non-defective = 1). In this case, the variable is said to be a discrete random variable.

The Probability Density Function and the Cumulative Distribution Function

The probability density function (pdf) and cumulative distribution function (cdf) are two of the
most important statistical functions in reliability and are very closely related. When these func-
tions are known, almost any other reliability measure of interest can be derived or obtained. We
will now take a closer look at these functions and how they relate to other reliability measures,
such as the reliability function and failure rate.

PAGE 286



ACCELERATED LIFE TESTING DATA ANALYSIS APPENDICES

From probability and statistics, given a continuous random variable we denote:

l The probability density function, pdf, as .

l The cumulative distribution function, cdf, as .

The pdf and cdf give a complete description of the probability distribution of a random variable.
The following figure illustrates a pdf.

The next figures illustrate the pdf - cdf relationship.
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If is a continuous random variable, then the pdf of is a function, , such that for any
two numbers, and with  :
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That is, the probability that takes on a value in the interval is the area under the dens-

ity function from to as shown above. The pdf represents the relative frequency of failure
times as a function of time.

The cdf is a function, , of a random variable , and is defined for a number by:

That is, for a number , is the probability that the observed value of will be at most
. The cdf represents the cumulative values of the pdf. That is, the value of a point on the curve

of the cdf represents the area under the curve to the left of that point on the pdf. In reliability,
the cdf is used to measure the probability that the item in question will fail before the associated
time value, , and is also called unreliability.

Note that depending on the density function, denoted by , the limits will vary based on the
region over which the distribution is defined. For example, for the life distributions considered

in this reference, with the exception of the normal distribution, this range would be

Mathematical Relationship: pdf and cdf

The mathematical relationship between the pdf and cdf is given by:

where is a dummy integration variable.

Conversely:

The cdf is the area under the probability density function up to a value of . The total area
under the pdf is always equal to 1, or mathematically:
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The well-known normal (or Gaussian) distribution is an example of a probability density func-
tion. The pdf for this distribution is given by:

where is the mean and is the standard deviation. The normal distribution has two para-
meters, and .

Another is the lognormal distribution, whose pdf is given by:

where is the mean of the natural logarithms of the times-to-failure and is the standard
deviation of the natural logarithms of the times-to-failure. Again, this is a 2-parameter dis-
tribution.
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Reliability Function

The reliability function can be derived using the previous definition of the cumulative dis-

tribution function, . From our definition of the cdf, the probability of an
event occurring by time is given by:

Or, one could equate this event to the probability of a unit failing by time .

Since this function defines the probability of failure by a certain time, we could consider this the
unreliability function. Subtracting this probability from 1 will give us the reliability function,
one of the most important functions in life data analysis. The reliability function gives the prob-
ability of success of a unit undertaking a mission of a given time duration. The following figure
illustrates this.

To show this mathematically, we first define the unreliability function, , which is the prob-
ability of failure, or the probability that our time-to-failure is in the region of 0 and . This is

the same as the cdf. So from :
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Reliability and unreliability are the only two events being considered and they are mutually
exclusive; hence, the sum of these probabilities is equal to unity.

Then:

Conversely:

Conditional Reliability Function

Conditional reliability is the probability of successfully completing another mission following
the successful completion of a previous mission. The time of the previous mission and the time
for the mission to be undertaken must be taken into account for conditional reliability cal-
culations. The conditional reliability function is given by:

Failure Rate Function

The failure rate function enables the determination of the number of failures occurring per unit
time. Omitting the derivation, the failure rate is mathematically given as:
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This gives the instantaneous failure rate, also known as the hazard function. It is useful in char-
acterizing the failure behavior of a component, determining maintenance crew allocation, plan-
ning for spares provisioning, etc. Failure rate is denoted as failures per unit time.

Mean Life (MTTF)

The mean life function, which provides a measure of the average time of operation to failure, is
given by:

This is the expected or average time-to-failure and is denoted as the MTTF (Mean Time To Fail-
ure).

The MTTF, even though an index of reliability performance, does not give any information on
the failure distribution of the component in question when dealing with most lifetime dis-
tributions. Because vastly different distributions can have identical means, it is unwise to use
the MTTF as the sole measure of the reliability of a component.

Median Life

Median life, , is the value of the random variable that has exactly one-half of the area under
the pdf to its left and one-half to its right. It represents the centroid of the distribution. The

median is obtained by solving the following equation for . (For individual data, the median is
the midpoint value.)

Modal Life (or Mode)

The modal life (or mode), , is the value of that satisfies:

For a continuous distribution, the mode is that value of that corresponds to the maximum prob-
ability density (the value at which the pdf has its maximum value, or the peak of the curve).
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Lifetime Distributions

A statistical distribution is fully described by its pdf. In the previous sections, we used the defin-
ition of the pdf to show how all other functions most commonly used in reliability engineering
and life data analysis can be derived. The reliability function, failure rate function, mean time

function, and median life function can be determined directly from the pdf definition, or .
Different distributions exist, such as the normal (Gaussian), exponential, Weibull, etc., and each

has a predefined form of that can be found in many references. In fact, there are certain
references that are devoted exclusively to different types of statistical distributions. These dis-
tributions were formulated by statisticians, mathematicians and engineers to mathematically
model or represent certain behavior. For example, the Weibull distribution was formulated by
Waloddi Weibull and thus it bears his name. Some distributions tend to better represent life data
and are most commonly called "lifetime distributions".

A more detailed introduction to this topic is presented in Life Distributions.

Appendix B: Parameter Estimation

This appendix presents two methods for estimating the parameters of accelerated life test data
analysis models (ALTA models). The graphical method, which is based on probability plotting
or least squares (Rank Regression on X or Rank Regression on Y), has some limitations. There-
fore, the Maximum Likelihood Estimation (MLE) method is used for all parameter estimation in
Weibull++.

Graphical Method

The graphical method for estimating the parameters of accelerated life data involves generating
two types of plots. First, the life data at each individual stress level are plotted on a probability
paper appropriate to the assumed life distribution (i.e., Weibull, exponential, or lognormal). This
can be done using either Probability Plotting or Least Squares (Rank Regression).

The parameters of the distribution at each stress level are then estimated from the plot. Once
these parameters have been estimated at each stress level, the second plot is created on a paper
that linearizes the assumed life-stress relationship (e.g., Arrhenius, inverse power law, etc.). To
do this, a life characteristic must be chosen to be plotted. The life characteristic can be any per-
centile, such as BX% life, the scale parameter, mean life, etc. The plotting paper used is a spe-
cial type of paper that linearizes the life-stress relationship. For example, a log-log paper
linearizes the inverse power law relationship, and a log-reciprocal paper linearizes the Arrhenius
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relationship. The parameters of the model are then estimated by solving for the slope and the
intercept of the line.
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Example of Graphical Method for Accelerated Life Data

Consider the following times-to-failure data at three different stress levels.

Stress 393 psi 408 psi 423 psi
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Time Failed (hrs) 3450 3300 2645

4340 3720 3100

4760 4180 3400

5320 4560 3800

5740 4920 4100

6160 5280 4400

6580 5640 4700

7140 6233 5100

8101 6840 5700

8960 7380 6400

Estimate the parameters for a Weibull assumed life distribution and for the inverse power law
life-stress relationship.

Solution

First the parameters of the Weibull distribution need to be determined. The data are individually
analyzed (for each stress level) using the probability plotting method, or software such as Reli-
aSoft's Weibull++, with the following results:

where:

l are the parameters of the 393 psi data.

l are the parameters of the 408 psi data.

l are the parameters of the 423 psi data.
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Since the shape parameter, is not common for the three stress levels, the average value is
estimated.

Averaging the betas is one of many simple approaches available. One can also use a weighted
average, since the uncertainty on beta is greater for smaller sample sizes. In most practical

applications the value of will vary (even though it is assumed constant) due to sampling

error, etc. The variability in the value of is a source of error when performing analysis by

averaging the betas. MLE analysis, which uses a common , is not susceptible to this error.
MLE analysis is the method of parameter estimation used in Weibull++ and it is explained in
the next section.

Redraw each line with a , and estimate the new etas, as follows:
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The IPL relationship is given by:

where represents a quantifiable life measure (eta in the Weibull case), represents the
stress level, is one of the parameters, and is another model parameter. The relationship is
linearized by taking the logarithm of both sides which yields:

where , ( is the intercept, and ( is the slope of the line.
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The values of eta obtained previously are now plotted on a log-linear scale yielding the fol-
lowing plot:

The slope of the line is the parameter, which is obtained from the plot:

Thus:

Solving the inverse power law equation with respect to yields:

Substituting V=403, the corresponding L (from the plot), L=6,000 and the previously estimated
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Comments on the Graphical Method

Although the graphical method is simple, it is quite laborious. Furthermore, many issues sur-
rounding its use require careful consideration. Some of these issues are presented next:

l What happens when no failures are observed at one or more stress level? In this case, plot-
ting methods cannot be employed. Discarding the data would be a mistake since every piece
of life data information is important.

l In the step at which the life-stress relationship is linearized and plotted to obtain its para-
meters, you must be able to linearize the function, which is not always possible.

l In real accelerated tests the data sets are small. Separating them and individually plotting
them, and then subsequently replotting the results, increases the underlying error.

l During initial parameter estimation, the parameter that is assumed constant will more than
likely vary. What value do you use?

l Confidence intervals on all of the results cannot be ascertained using graphical methods.

The maximum likelihood estimation parameter estimation method described next overcomes
these shortfalls, and is the method utilized in Weibull++.

Maximum Likelihood Estimation (MLE) Method

The idea behind maximum likelihood parameter estimation is to determine the parameters that
maximize the probability (likelihood) of the sample data. From a statistical point of view, the
method of maximum likelihood is considered to be more robust (with some exceptions) and
yields estimators with good statistical properties. In other words, MLE methods are versatile
and apply to most models and to different types of data. In addition, they provide efficient meth-
ods for quantifying uncertainty through confidence bounds. For a detailed discussion of this ana-
lysis method for a single life distribution, see Maximum Likelihood Estimation.

The maximum likelihood solution for accelerated life test data is formulated in the same way as
described in Maximum Likelihood Estimation for a single life distribution. However, in this
case, the stress level of each individual observation is included in the likelihood function. Con-

sider a continuous random variable where is the stress. The pdf of the random variable
now becomes a function of both and  :
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where are unknown constant parameters which need to be estimated. Con-
duct an experiment and obtain independent observations, each at a cor-
responding stress, . Then the likelihood function for complete data is given by:

The logarithmic likelihood function is given by:

The maximum likelihood estimators (MLE) of are obtained by maximizing
or

In this case, are the parameters of the combined model which includes the para-
meters of the life distribution and the parameters of the life-stress relationship. Note that in the
above equations, is the total number of observations. This means that the sample size is no
longer broken into the number of observations at each stress level. In the graphical method
example, the sample size at the stress level of 20V was 4, and 15 at 36V. Using the above equa-
tions, however, the test's sample size is 19.

Once the parameters are estimated, they can be substituted back into the life distribution and the
life-stress relationship.

Example of MLE for Accelerated Life Data

The following example illustrates the use of the MLE method on accelerated life test data. Con-
sider the inverse power law relationship, given by:

where represents a quantifiable life measure, represents the stress level, is one of the
parameters, and is another model parameter.

PAGE 302



ACCELERATED LIFE TESTING DATA ANALYSIS APPENDICES

Assume that the life at each stress follows a Weibull distribution, with a pdf given by:

where the time-to-failure, , is a function of stress, .

A common life measure needs to determined so that it can be easily included in the Weibull pdf.

In this case, setting (which is the life at 63.2%) and substituting in the Weibull pdf,
yields the following IPL-Weibull pdf :

The log-likelihood function for the complete data is given by:

Note that is now the common shape parameter to solve for, along with and

Conclusions

In this appendix, two methods for estimating the parameters of accelerated life testing models
were presented. First, the graphical method was illustrated using a probability plotting method
for obtaining the parameters of the life distribution. The parameters of the life-stress relationship
were then estimated graphically by linearizing the model. However, not all life-stress rela-
tionships can be linearized. In addition, estimating the parameters of each individual distribution
leads to an accumulation of uncertainties, depending on the number of failures and suspensions
observed at each stress level. Furthermore, the slopes (shape parameters) of each individual dis-
tribution are rarely equal (common). Using the graphical method, one must estimate a common
shape parameter (usually the average) and repeat the analysis. By doing so, further uncertainties
are introduced on the estimates, and these are uncertainties that cannot be quantified. The
second method, the Maximum Likelihood Estimation, treated both the life distribution and the
life-stress relationship as one model, the parameters of that model can be estimated using the
complete likelihood function. Doing so, a common shape parameter is estimated for the model,
thus eliminating the uncertainties of averaging the individual shape parameters. All uncertainties
are accounted for in the form of confidence bounds (presented in detail in Appendix D), which
are quantifiable because they are obtained based on the overall model.
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Appendix C: Benchmark Examples

In this section, five published examples are presented for comparison purposes. ReliaSoft's
R&D validated the Weibull++ software with hundreds of data sets and methods. Weibull++ also
cross-validates each provided solution by independently re-evaluating the second partial deriv-
atives based on the estimated parameters each time a calculation is performed. These partials
will be equal to zero when a solution is reached. Double precision is used throughout
Weibull++.

Example 1

From Wayne Nelson [28, p. 135].

Published Results for Example 1

l Published Results:

Computed Results for Example 1

This same data set can be entered into Weibull++ by selecting the data sheet for grouped times-
to-failure data with suspensions and using the Arrhenius model, the lognormal distribution, and
MLE. Weibull++ computed parameters for maximum likelihood are:

Example 2

From Wayne Nelson [28, p. 453], time to breakdown of a transformer oil, tested at 26kV, 28kV,
30kV, 32kV, 34kV, 36kV and 38kV.

Published Results for Example 2

l Published Results:
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l Published 95% confidence limits on :

Computed Results for Example 2

Use the inverse power law model and Weibull as the underlying life distribution. Weibull++
computed parameters are:

l Weibull++ computed 95% confidence limits on the parameters:

Example 3

From Wayne Nelson [28, p. 157], forty bearings were tested to failure at four different test
loads. The data were analyzed using the inverse power law Weibull model.

Published Results for Example 3

Nelson's [28, p. 306] IPL-Weibull parameter estimates:

l The 95% 2-sided confidence bounds on the parameters:
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l Percentile estimates at a stress of 0.87, with 95% 2-sided confidence bounds:

Percentile Life Estimate 95% Lower 95% Upper

1% 0.3913096 0.1251383 1.223632

10% 2.589731 1.230454 5.450596

90% 30.94404 19.41020 49.33149

99% 54.03563 33.02691 88.40821

Computed Results for Example 3

Use the inverse power law model and Weibull as the underlying life distribution.

l Weibull++ computed parameters are:

l The 95% 2-sided confidence bounds on the parameters:

l Percentile estimates at a stress of 0.87, with 95% 2-sided confidence bounds:

Percentile Life Estimate 95% Lower 95% Upper

1% 0.3913095 0.1251097 1.223911

10% 2.589814 1.230384 5.451588

90% 30.94632 19.40876 49.34240

99% 54.04012 33.02411 88.43039
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Example 4

From Meeker and Escobar [26, p. 504], Mylar-Polyurethane Insulating Structure data using the
inverse power law lognormal model.

Published Results for Example 4

l Published Results:

l The 95% 2-sided confidence bounds on the parameters:

Computed Results for Example 4

Use the inverse power law lognormal.

l Weibull++ computed parameters are:

l Weibull++ computed 95% confidence limits on the parameters:

Example 5

From Meeker and Escobar [26, p. 515], Tantalum capacitor data using the combination (Tem-
perature-NonThermal) Weibull model.
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Published Results for Example 5

l Published Results:

l The 95% 2-sided confidence bounds on the parameters:

Computed Results for Example 5

Use the Temperature-NonThermal model and Weibull as the underlying life distribution.

l Weibull++ computed parameters are:

l Weibull++ computed 95% confidence limits on the parameters:
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Appendix D: Confidence Bounds

What Are Confidence Bounds?

One of the most confusing concepts to a novice reliability engineer is estimating the precision
of an estimate. This is an important concept in the field of reliability engineering, leading to the
use of confidence intervals (or bounds). In this section, we will try to briefly present the concept
in relatively simple terms but based on solid common sense.

The Black and White Marbles

To illustrate, consider the case where there are millions of perfectly mixed black and white
marbles in a rather large swimming pool and our job is to estimate the percentage of black
marbles. The only way to be absolutely certain about the exact percentage of marbles in the
pool is to accurately count every last marble and calculate the percentage. However, this is too
time- and resource-intensive to be a viable option, so we need to come up with a way of estim-
ating the percentage of black marbles in the pool. In order to do this, we would take a relatively
small sample of marbles from the pool and then count how many black marbles are in the
sample.

Taking a Small Sample of Marbles

First, pick out a small sample of marbles and count the black ones. Say you picked out ten
marbles and counted four black marbles. Based on this, your estimate would be that 40% of the
marbles are black.

If you put the ten marbles back in the pool and repeat this example again, you might get six
black marbles, changing your estimate to 60% black marbles. Which of the two is correct? Both
estimates are correct! As you repeat this experiment over and over again, you might find out
that this estimate is usually between and , and you can assign a percentage to the
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number of times your estimate falls between these limits. For example, you notice that 90% of
the time this estimate is between and

Taking a Larger Sample of Marbles

If you now repeat the experiment and pick out 1,000 marbles, you might get results for the num-
ber of black marbles such as 545, 570, 530, etc., for each trial. The range of the estimates in this
case will be much narrower than before. For example, you observe that 90% of the time, the
number of black marbles will now be from to , where and

, thus giving you a more narrow estimate interval. The same principle is true for
confidence intervals; the larger the sample size, the more narrow the confidence intervals.

Back to Reliability

We will now look at how this phenomenon relates to reliability. Overall, the reliability engin-
eer's task is to determine the probability of failure, or reliability, of the population of units in
question. However, one will never know the exact reliability value of the population unless one
is able to obtain and analyze the failure data for every single unit in the population. Since this
usually is not a realistic situation, the task then is to estimate the reliability based on a sample,
much like estimating the number of black marbles in the pool. If we perform ten different reli-
ability tests for our units, and analyze the results, we will obtain slightly different parameters for
the distribution each time, and thus slightly different reliability results. However, by employing
confidence bounds, we obtain a range within which these reliability values are likely to occur a
certain percentage of the time. This helps us gauge the utility of the data and the accuracy of the
resulting estimates. Plus, it is always useful to remember that each parameter is an estimate of
the true parameter, one that is unknown to us. This range of plausible values is called a con-
fidence interval.

One-Sided and Two-Sided Confidence Bounds

Confidence bounds are generally described as being one-sided or two-sided.

Two-Sided Bounds
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When we use two-sided confidence bounds (or intervals), we are looking at a closed interval
where a certain percentage of the population is likely to lie. That is, we determine the values, or
bounds, between which lies a specified percentage of the population. For example, when dealing

with 90% two-sided confidence bounds of , we are saying that 90% of the population
lies between and with 5% less than and 5% greater than .

One-Sided Bounds

One-sided confidence bounds are essentially an open-ended version of two-sided bounds. A
one-sided bound defines the point where a certain percentage of the population is either higher
or lower than the defined point. This means that there are two types of one-sided bounds: upper
and lower. An upper one-sided bound defines a point that a certain percentage of the population
is less than. Conversely, a lower one-sided bound defines a point that a specified percentage of
the population is greater than.
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For example, if is a 95% upper one-sided bound, this would imply that 95% of the pop-
ulation is less than . If is a 95% lower one-sided bound, this would indicate that 95% of
the population is greater than . Care must be taken to differentiate between one- and two-
sided confidence bounds, as these bounds can take on identical values at different percentage
levels. For example, in the figures above, we see bounds on a hypothetical distribution. Assum-
ing that this is the same distribution in all of the figures, we see that marks the spot below
which 5% of the distribution's population lies. Similarly, represents the point above which
5% of the population lies. Therefore, and represent the 90% two-sided bounds, since
90% of the population lies between the two points. However, also represents the lower one-
sided 95% confidence bound, since 95% of the population lies above that point; and
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represents the upper one-sided 95% confidence bound, since 95% of the population is below .
It is important to be sure of the type of bounds you are dealing with, particularly as both one-
sided bounds can be displayed simultaneously in Weibull++. In Weibull++, we use upper to rep-
resent the higher limit and lower to represent the lower limit, regardless of their position, but
based on the value of the results. So if obtaining the confidence bounds on the reliability, we
would identify the lower value of reliability as the lower limit and the higher value of reliability
as the higher limit. If obtaining the confidence bounds on probability of failure we will again
identify the lower numeric value for the probability of failure as the lower limit and the higher
value as the higher limit.

Fisher Matrix Confidence Bounds

This section presents an overview of the theory on obtaining approximate confidence bounds on
suspended (multiple censored) data. The methodology used is the so-called Fisher matrix
bounds (FM), described in Nelson [30] and Lloyd and Lipow [24]. These bounds are employed
in most other commercial statistical applications. In general, these bounds tend to be more
optimistic than the non-parametric rank based bounds. This may be a concern, particularly when
dealing with small sample sizes. Some statisticians feel that the Fisher matrix bounds are too
optimistic when dealing with small sample sizes and prefer to use other techniques for cal-
culating confidence bounds, such as the likelihood ratio bounds.

Approximate Estimates of the Mean and Variance of a Function

In utilizing FM bounds for functions, one must first determine the mean and variance of the
function in question (i.e., reliability function, failure rate function, etc.). An example of the
methodology and assumptions for an arbitrary function is presented next.

Single Parameter Case

For simplicity, consider a one-parameter distribution represented by a general function

which is a function of one parameter estimator, say For example, the mean of the expo-

nential distribution is a function of the parameter . Then, in general, the

expected value of can be found by:
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where is some function of , such as the reliability function, and is the population

parameter where as . The term is a function of , the sample

size, and tends to zero, as fast as as For example, in the case of and

, then where . Thus as ,

where and are the mean and standard deviation, respectively. Using the

same one-parameter distribution, the variance of the function can then be estimated by:

Two-Parameter Case

Consider a Weibull distribution with two parameters and . For a given value of ,

. Repeating the previous method for the case of a two-parameter
distribution, it is generally true that for a function , which is a function of two parameter

estimators, say , that:

and:
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Note that the derivatives of the above equation are evaluated at and where

E and E

Parameter Variance and Covariance Determination

The determination of the variance and covariance of the parameters is accomplished via the use
of the Fisher information matrix. For a two-parameter distribution, and using maximum like-
lihood estimates (MLE), the log-likelihood function for censored data is given by:

In the equation above, the first summation is for complete data, the second summation is for
right censored data and the third summation is for interval or left censored data.

Then the Fisher information matrix is given by:
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The subscript 0 indicates that the quantity is evaluated at and the true val-
ues of the parameters.

So for a sample of units where units have failed, have been suspended, and have

failed within a time interval, and one could obtain the sample local
information matrix by:

Substituting the values of the estimated parameters, in this case and , and then inverting
the matrix, one can then obtain the local estimate of the covariance matrix or:

Then the variance of a function ( ) can be estimated using equation for the variance.
Values for the variance and covariance of the parameters are obtained from Fisher Matrix equa-
tion. Once they have been obtained, the approximate confidence bounds on the function are
given as:

which is the estimated value plus or minus a certain number of standard deviations. We address
finding next.

Approximate Confidence Intervals on the Parameters

In general, MLE estimates of the parameters are asymptotically normal, meaning that for large
sample sizes, a distribution of parameter estimates from the same population would be very

close to the normal distribution. Thus if is the MLE estimator for , in the case of a single
parameter distribution estimated from a large sample of units, then:
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follows an approximating normal distribution. That is

for large . We now place confidence bounds on at some confidence level , bounded by
the two end points and where:

From the above equation:

where is defined by:

Now by simplifying the equation for the confidence level, one can obtain the approximate two-
sided confidence bounds on the parameter at a confidence level or:

The upper one-sided bounds are given by:

while the lower one-sided bounds are given by:
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If must be positive, then is treated as normally distributed. The two-sided approximate
confidence bounds on the parameter , at confidence level , then become:

The one-sided approximate confidence bounds on the parameter , at confidence level can
be found from:

The same procedure can be extended for the case of a two or more parameter distribution. Lloyd
and Lipow [24] further elaborate on this procedure.

Confidence Bounds on Time (Type 1)

Type 1 confidence bounds are confidence bounds around time for a given reliability. For
example, when using the one-parameter exponential distribution, the corresponding time for a

given exponential percentile (i.e., y-ordinate or unreliability, is determined by
solving the unreliability function for the time, , or:
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Bounds on time (Type 1) return the confidence bounds around this time value by determining

the confidence intervals around and substituting these values into the above equation. The

bounds on are determined using the method for the bounds on parameters, with its variance
obtained from the Fisher Matrix. Note that the procedure is slightly more complicated for dis-
tributions with more than one parameter.

Confidence Bounds on Reliability (Type 2)

Type 2 confidence bounds are confidence bounds around reliability. For example, when using
the two-parameter exponential distribution, the reliability function is:

Reliability bounds (Type 2) return the confidence bounds by determining the confidence inter-

vals around and substituting these values into the above equation. The bounds on are
determined using the method for the bounds on parameters, with its variance obtained from the
Fisher Matrix. Once again, the procedure is more complicated for distributions with more than
one parameter.

Beta Binomial Confidence Bounds

Another less mathematically intensive method of calculating confidence bounds involves a pro-
cedure similar to that used in calculating median ranks (see Parameter Estimation). This is a
non-parametric approach to confidence interval calculations that involves the use of rank tables
and is commonly known as beta-binomial bounds (BB). By non-parametric, we mean that no
underlying distribution is assumed. (Parametric implies that an underlying distribution, with
parameters, is assumed.) In other words, this method can be used for any distribution, without
having to make adjustments in the underlying equations based on the assumed distribution.
Recall from the discussion on the median ranks that we used the binomial equation to compute
the ranks at the 50% confidence level (or median ranks) by solving the cumulative binomial dis-

tribution for (rank for the failure):

where is the sample size and is the order number.

The median rank was obtained by solving the following equation for :
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The same methodology can then be repeated by changing for 0.50 (50%) to our desired con-
fidence level. For one would formulate the equation as

Keep in mind that one must be careful to select the appropriate values for based on the type
of confidence bounds desired. For example, if two-sided 80% confidence bounds are to be cal-
culated, one must solve the equation twice (once with and once with ) in
order to place the bounds around 80% of the population.

Using this methodology, the appropriate ranks are obtained and plotted based on the desired con-
fidence level. These points are then joined by a smooth curve to obtain the corresponding con-
fidence bound.

In Weibull++, this non-parametric methodology is used only when plotting bounds on the
mixed Weibull distribution. Full details on this methodology can be found in Kececioglu [20].
These binomial equations can again be transformed using the beta and F distributions, thus the
name beta binomial confidence bounds.

Likelihood Ratio Confidence Bounds

Another method for calculating confidence bounds is the likelihood ratio bounds (LRB) method.
Conceptually, this method is a great deal simpler than that of the Fisher matrix, although that
does not mean that the results are of any less value. In fact, the LRB method is often preferred
over the FM method in situations where there are smaller sample sizes.

Likelihood ratio confidence bounds are based on the following likelihood ratio equation:

where:
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l is the likelihood function for the unknown parameter vector

l is the likelihood function calculated at the estimated vector

l is the chi-squared statistic with probability and degrees of freedom, where
is the number of quantities jointly estimated

If is the confidence level, then for two-sided bounds and for one-
sided. Recall from the Brief Statistical Background chapter that if is a continuous random
variable with pdf:

where are unknown constant parameters that need to be estimated, one can
conduct an experiment and obtain independent observations, , which cor-
respond in the case of life data analysis to failure times. The likelihood function is given by:

The maximum likelihood estimators (MLE) of are are obtained by max-

imizing These are represented by the term in the denominator of the ratio in the like-
lihood ratio equation. Since the values of the data points are known, and the values of the

parameter estimates have been calculated using MLE methods, the only unknown term in the

likelihood ratio equation is the term in the numerator of the ratio. It remains to find the
values of the unknown parameter vector that satisfy the likelihood ratio equation. For dis-
tributions that have two parameters, the values of these two parameters can be varied in order to
satisfy the likelihood ratio equation. The values of the parameters that satisfy this equation will
change based on the desired confidence level but at a given value of there is only a certain
region of values for and for which the likelihood ratio equation holds true. This region
can be represented graphically as a contour plot, an example of which is given in the following
graphic.
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The region of the contour plot essentially represents a cross-section of the likelihood function
surface that satisfies the conditions of the likelihood ratio equation.

Note on Contour Plots in Weibull++

Contour plots can be used for comparing data sets. Consider two data sets, one for an&.htm-
l#160;old product design and another for a new design. The engineer would like to determine if
the two designs are significantly different and at what confidence. By plotting the contour plots
of each data set in an overlay plot (the same distribution must be fitted to each data set), one can
determine the confidence at which the two sets are significantly different. If, for example, there
is no overlap (i.e., the two plots do not intersect) between the two 90% contours, then the two
data sets are significantly different with a 90% confidence. If the two 95% contours overlap,
then the two designs are NOT significantly different at the 95% confidence level. An example
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of non-intersecting contours is shown next. For details on comparing data sets, see Comparing
Life Data Sets.

Confidence Bounds on the Parameters

The bounds on the parameters are calculated by finding the extreme values of the contour plot
on each axis for a given confidence level. Since each axis represents the possible values of a
given parameter, the boundaries of the contour plot represent the extreme values of the para-
meters that satisfy the following:

This equation can be rewritten as:

The task now is to find the values of the parameters and so that the equality in the like-
lihood ratio equation shown above is satisfied. Unfortunately, there is no closed-form solution;
therefore, these values must be arrived at numerically. One way to do this is to hold one
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parameter constant and iterate on the other until an acceptable solution is reached. This can
prove to be rather tricky, since there will be two solutions for one parameter if the other is held
constant. In situations such as these, it is best to begin the iterative calculations with values
close to those of the MLE values, so as to ensure that one is not attempting to perform cal-
culations outside of the region of the contour plot where no solution exists.

Example 1:Likelihood Ratio Bounds on Parameters

Five units were put on a reliability test and experienced failures at 10, 20, 30, 40 and 50 hours.
Assuming a Weibull distribution, the MLE parameter estimates are calculated to be

and Calculate the 90% two-sided confidence bounds on these
parameters using the likelihood ratio method.

Solution

The first step is to calculate the likelihood function for the parameter estimates:

where are the original time-to-failure data points. We can now rearrange the likelihood ratio
equation to the form:

Since our specified confidence level, , is 90%, we can calculate the value of the chi-squared

statistic, We then substitute this information into the equation:
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The next step is to find the set of values of and that satisfy this equation, or find the values

of and such that

The solution is an iterative process that requires setting the value of and finding the appro-

priate values of , and vice versa. The following table gives values of based on given values
of .

These data are represented graphically in the following contour plot:
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(Note that this plot is generated with degrees of freedom , as we are only determining
bounds on one parameter. The contour plots generated in Weibull++ are done with degrees of
freedom , for use in comparing both parameters simultaneously.) As can be determined

from the table, the lowest calculated value for is 1.142, while the highest is 3.950. These rep-
resent the two-sided 90% confidence limits on this parameter. Since solutions for the equation
do not exist for values of below 23 or above 50, these can be considered the 90% confidence
limits for this parameter. In order to obtain more accurate values for the confidence limits on ,
we can perform the same procedure as before, but finding the two values of that correspond

with a given value of Using this method, we find that the 90% confidence limits on are
22.474 and 49.967, which are close to the initial estimates of 23 and 50.

Note that the points where are maximized and minimized do not necessarily correspond with
the points where are maximized and minimized. This is due to the fact that the contour plot is
not symmetrical, so that the parameters will have their extremes at different points.

Confidence Bounds on Time (Type 1)

The manner in which the bounds on the time estimate for a given reliability are calculated is
much the same as the manner in which the bounds on the parameters are calculated. The dif-
ference lies in the form of the likelihood functions that comprise the likelihood ratio. In the pre-
ceding section, we used the standard form of the likelihood function, which was in terms of the
parameters and . In order to calculate the bounds on a time estimate, the likelihood func-
tion needs to be rewritten in terms of one parameter and time, so that the maximum and
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minimum values of the time can be observed as the parameter is varied. This process is best
illustrated with an example.

Example 2:Likelihood Ratio Bounds on Time (Type I)

For the data given in Example 1, determine the 90% two-sided confidence bounds on the time

estimate for a reliability of 50%. The ML estimate for the time at which is
28.930.

Solution

In this example, we are trying to determine the 90% two-sided confidence bounds on the time
estimate of 28.930. As was mentioned, we need to rewrite the likelihood ratio equation so that it
is in terms of and This is accomplished by using a form of the Weibull reliability equa-

tion, This can be rearranged in terms of , with being considered a known
variable or:

This can then be substituted into the term in the likelihood ratio equation to form a likelihood

equation in terms of and or:
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where are the original time-to-failure data points. We can now rearrange the likelihood ratio
equation to the form:

Since our specified confidence level, , is 90%, we can calculate the value of the chi-squared

statistic, We can now substitute this information into the equation:

Note that the likelihood value for is the same as it was for Example 1. This is because
we are dealing with the same data and parameter estimates or, in other words, the maximum
value of the likelihood function did not change. It now remains to find the values of and

which satisfy this equation. This is an iterative process that requires setting the value of and
finding the appropriate values of . The following table gives the values of based on given

values of .

PAGE 328



ACCELERATED LIFE TESTING DATA ANALYSIS APPENDICES

These points are represented graphically in the following contour plot:

As can be determined from the table, the lowest calculated value for is 17.389, while the
highest is 41.714. These represent the 90% two-sided confidence limits on the time at which reli-
ability is equal to 50%.
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Confidence Bounds on Reliability (Type 2)

The likelihood ratio bounds on a reliability estimate for a given time value are calculated in the
same manner as were the bounds on time. The only difference is that the likelihood function
must now be considered in terms of and . The likelihood function is once again altered in
the same way as before, only now is considered to be a parameter instead of , since the
value of must be specified in advance. Once again, this process is best illustrated with an
example.

Example 3:Likelihood Ratio Bounds on Reliability (Type 2)

For the data given in Example 1, determine the 90% two-sided confidence bounds on the reli-
ability estimate for . The ML estimate for the reliability at is 14.816%.

Solution

In this example, we are trying to determine the 90% two-sided confidence bounds on the reli-
ability estimate of 14.816%. As was mentioned, we need to rewrite the likelihood ratio equation
so that it is in terms of and This is again accomplished by substituting the Weibull reli-
ability equation into the term in the likelihood ratio equation to form a likelihood equation in

terms of and :

where are the original time-to-failure data points. We can now rearrange the likelihood ratio
equation to the form:
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Since our specified confidence level, , is 90%, we can calculate the value of the chi-squared

statistic, We can now substitute this information into the equation:

It now remains to find the values of and that satisfy this equation. This is an iterative pro-

cess that requires setting the value of and finding the appropriate values of . The following

table gives the values of based on given values of .

These points are represented graphically in the following contour plot:
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As can be determined from the table, the lowest calculated value for is 2.38%, while the
highest is 44.26%. These represent the 90% two-sided confidence limits on the reliability at

.

Bayesian Confidence Bounds

A fourth method of estimating confidence bounds is based on the Bayes theorem. This type of
confidence bounds relies on a different school of thought in statistical analysis, where prior
information is combined with sample data in order to make inferences on model parameters and
their functions. An introduction to Bayesian methods is given in the Parameter Estimation
chapter. Bayesian confidence bounds are derived from Bayes's rule, which states that:

where:

l ) is the posterior pdf of

l is the parameter vector of the chosen distribution (i.e., Weibull, lognormal, etc.)

l is the likelihood function
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l is the prior pdf of the parameter vector

l is the range of .

In other words, the prior knowledge is provided in the form of the prior pdf of the parameters,
which in turn is combined with the sample data in order to obtain the posterior pdf. Different
forms of prior information exist, such as past data, expert opinion or non-informative (refer to
Parameter Estimation). It can be seen from the above Bayes's rule formula that we are now deal-
ing with distributions of parameters rather than single value parameters. For example, consider a
one-parameter distribution with a positive parameter . Given a set of sample data, and a prior

distribution for the above Bayes's rule formula can be written as:

In other words, we now have the distribution of and we can now make statistical inferences
on this parameter, such as calculating probabilities. Specifically, the probability that is less

than or equal to a value can be obtained by integrating the posterior probability
density function (pdf), or:

The above equation is the posterior cdf, which essentially calculates a confidence bound on the

parameter, where is the confidence level and is the confidence bound. Sub-
stituting the posterior pdf into the above posterior cdf yields:

The only question at this point is, what do we use as a prior distribution of ? For the con-
fidence bounds calculation application, non-informative prior distributions are utilized. Non-
informative prior distributions are distributions that have no population basis and play a min-
imal role in the posterior distribution. The idea behind the use of non-informative prior dis-
tributions is to make inferences that are not affected by external information, or when external
information is not available. In the general case of calculating confidence bounds using
Bayesian methods, the method should be independent of external information and it should only
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rely on the current data. Therefore, non-informative priors are used. Specifically, the uniform
distribution is used as a prior distribution for the different parameters of the selected fitted dis-
tribution. For example, if the Weibull distribution is fitted to the data, the prior distributions for
beta and eta are assumed to be uniform. The above equation can be generalized for any dis-
tribution having a vector of parameters yielding the general equation for calculating
Bayesian confidence bounds:

where:

l is the confidence level

l is the parameter vector

l is the likelihood function

l is the prior pdf of the parameter vector

l is the range of

l is the range in which changes from till 's maximum value, or from

's minimum value till

l is a function such that if is given, then the bounds are calculated for .
If is given, then the bounds are calculated for .

If is given, then from the above equation and and for a given , the bounds on are
calculated. If is given, then from the above equation and and for a given the bounds
on are calculated.

Confidence Bounds on Time (Type 1)

For a given failure time distribution and a given reliability , is a function of and
the distribution parameters. To illustrate the procedure for obtaining confidence bounds, the
two-parameter Weibull distribution is used as an example. The bounds in other types of dis-
tributions can be obtained in similar fashion. For the two-parameter Weibull distribution:
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For a given reliability, the Bayesian one-sided upper bound estimate for is:

where is the posterior distribution of Time Using the above equation, we
have the following:

The above equation can be rewritten in terms of as:

Applying the Bayes's rule by assuming that the priors of and are independent, we then
obtain the following relationship:

The above equation can be solved for , where:

l is the confidence level,

l is the prior pdf of the parameter . For non-informative prior distribution,

l is the prior pdf of the parameter For non-informative prior distribution,

l is the likelihood function.
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The same method can be used to get the one-sided lower bound of from:

The above equation can be solved to get .

The Bayesian two-sided bounds estimate for is:

which is equivalent to:

and:

Using the same method for the one-sided bounds, and can be solved.

Confidence Bounds on Reliability (Type 2)

For a given failure time distribution and a given time , is a function of and the dis-
tribution parameters. To illustrate the procedure for obtaining confidence bounds, the two-para-
meter Weibull distribution is used as an example. The bounds in other types of distributions can
be obtained in similar fashion. For example, for two parameter Weibull distribution:

The Bayesian one-sided upper bound estimate for is:
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Similar to the bounds on Time, the following is obtained:

The above equation can be solved to get .

The Bayesian one-sided lower bound estimate for R(T) is:

Using the posterior distribution, the following is obtained:

The above equation can be solved to get .

The Bayesian two-sided bounds estimate for is:

which is equivalent to:

and
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Using the same method for one-sided bounds, and can be solved.

Simulation Based Bounds

The SimuMatic tool in Weibull++ can be used to perform a large number of reliability analyses
on data sets that have been created using Monte Carlo simulation. This utility can assist the ana-
lyst to a) better understand life data analysis concepts, b) experiment with the influences of
sample sizes and censoring schemes on analysis methods, c) construct simulation-based con-
fidence intervals, d) better understand the concepts behind confidence intervals and e) design
reliability tests. This section describes how to use simulation for estimating confidence bounds.

SimuMatic generates confidence bounds and assists in visualizing and understanding them. In
addition, it allows one to determine the adequacy of certain parameter estimation methods (such
as rank regression on X, rank regression on Y and maximum likelihood estimation) and to visu-
alize the effects of different data censoring schemes on the confidence bounds.

Example:Comparing Parameter Estimation Methods Using Simulation Based Bounds

The purpose of this example is to determine the best parameter estimation method for a sample
of ten units with complete time-to-failure data for each unit (i.e., no censoring). The data set fol-
lows a Weibull distribution with and hours.

The confidence bounds for the data set could be obtained by using Weibull++'s SimuMatic util-
ity. To obtain the results, use the following settings in SimuMatic.

1. On the Main tab, choose the 2P-Weibull distribution and enter the given parameters
(i.e., and hours)

2. On the Censoring tab, select the No censoring option.

3. On the Settings tab, set the number of data sets to 1,000 and the number of data
points to 10.

4. On the Analysis tab, choose the RRX analysis method and set the confidence bounds
to 90.
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The following plot shows the simulation-based confidence bounds for the RRX parameter estim-
ation method, as well as the expected variation due to sampling error.

Create another SimuMatic folio and generate a second data using the same settings, but this
time, select the RRY analysis method on the Analysis tab. The following plot shows the result.
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The following plot shows the results using the MLE analysis method.
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The results clearly demonstrate that the median RRX estimate provides the least deviation from
the truth for this sample size and data type. However, the MLE outputs are grouped more
closely together, as evidenced by the bounds.

This experiment can be repeated in SimuMatic using multiple censoring schemes (including
Type I and Type II right censoring as well as random censoring) with various distributions. Mul-
tiple experiments can be performed with this utility to evaluate assumptions about the appro-
priate parameter estimation method to use for data sets.
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