Appendix C: Benchmark Examples
In this section, five published examples are presented for comparison purposes. ReliaSoft's R&D validated the Weibull++ software with hundreds of data sets and methods. Weibull++ also cross-validates each provided solution by independently re-evaluating the second partial derivatives based on the estimated parameters each time a calculation is performed. These partials will be equal to zero when a solution is reached. Double precision is used throughout Weibull++.
Example 1
From Wayne Nelson [28, p. 135].
Published Results for Example 1
- Published Results:
Computed Results for Example 1
This same data set can be entered into Weibull++ by selecting the data sheet for grouped times-to-failure data with suspensions and using the Arrhenius model, the lognormal distribution, and MLE. Weibull++ computed parameters for maximum likelihood are:
Example 2
From Wayne Nelson [28, p. 453], time to breakdown of a transformer oil, tested at 26kV, 28kV, 30kV, 32kV, 34kV, 36kV and 38kV.
Published Results for Example 2
- Published Results:
- Published 95% confidence limits on
:
Computed Results for Example 2
Use the inverse power law model and Weibull as the underlying life distribution. Weibull++ computed parameters are:
- Weibull++ computed 95% confidence limits on the parameters:
Example 3
From Wayne Nelson [28, p. 157], forty bearings were tested to failure at four different test loads. The data were analyzed using the inverse power law Weibull model.
Published Results for Example 3
Nelson's [28, p. 306] IPL-Weibull parameter estimates:
- The 95% 2-sided confidence bounds on the parameters:
- Percentile estimates at a stress of 0.87, with 95% 2-sided confidence bounds:
Percentile | Life Estimate | 95% Lower | 95% Upper |
---|---|---|---|
1% | 0.3913096 | 0.1251383 | 1.223632 |
10% | 2.589731 | 1.230454 | 5.450596 |
90% | 30.94404 | 19.41020 | 49.33149 |
99% | 54.03563 | 33.02691 | 88.40821 |
Computed Results for Example 3
Use the inverse power law model and Weibull as the underlying life distribution.
- Weibull++ computed parameters are:
- The 95% 2-sided confidence bounds on the parameters:
- Percentile estimates at a stress of 0.87, with 95% 2-sided confidence bounds:
Percentile | Life Estimate | 95% Lower | 95% Upper |
---|---|---|---|
1% | 0.3913095 | 0.1251097 | 1.223911 |
10% | 2.589814 | 1.230384 | 5.451588 |
90% | 30.94632 | 19.40876 | 49.34240 |
99% | 54.04012 | 33.02411 | 88.43039 |
Example 4
From Meeker and Escobar [26, p. 504], Mylar-Polyurethane Insulating Structure data using the inverse power law lognormal model.
Published Results for Example 4
- Published Results:
- The 95% 2-sided confidence bounds on the parameters:
Computed Results for Example 4
Use the inverse power law lognormal.
- Weibull++ computed parameters are:
- Weibull++ computed 95% confidence limits on the parameters:
Example 5
From Meeker and Escobar [26, p. 515], Tantalum capacitor data using the combination (Temperature-NonThermal) Weibull model.
Published Results for Example 5
- Published Results:
- The 95% 2-sided confidence bounds on the parameters:
Computed Results for Example 5
Use the Temperature-NonThermal model and Weibull as the underlying life distribution.
- Weibull++ computed parameters are:
- Weibull++ computed 95% confidence limits on the parameters: